1. Academic Validation
  2. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

  • Neuropsychopharmacology. 2003 Jun;28(6):1168-75. doi: 10.1038/sj.npp.1300151.
Maibritt B Andersen 1 Anders Fink-Jensen Linda Peacock Jes Gerlach Frank Bymaster Jens August Lundbaek Thomas Werge
Affiliations

Affiliation

  • 1 Research Institute of Biological Psychiatry, Sct. Hans Hospital, Denmark.
Abstract

Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects (EPS) at therapeutically relevant doses. In the present study, we examined whether the xanomeline-induced functional dopamine antagonism found in rodent studies could also be observed in nonhuman primates. In addition, we studied whether the lack of EPS observed in rodents also applies to primates. To this end, we investigated the effects of xanomeline on the behavior induced by D-amphetamine and (-)-apomorphine in drug-naive Cebus apella monkeys. Antipsychotic compounds antagonize amphetamine-induced motor unrest and stereotypies in this species. Xanomeline inhibited D-amphetamine-induced motor unrest, stereotypies and arousal as well as apomorphine-induced stereotypies and arousal in drug-naive Cebus apella monkeys. Xanomeline did not induce EPS but vomiting occurred in some monkeys at high doses, in accordance with emetic events observed in Alzheimer patients following xanomeline administration. Even when xanomeline was tested in EPS-sensitized Cebus apella monkeys, EPS were not observed at the dose range of xanomeline used in the D-amphetamine-apomorphine combination study (0.5-3 mg/kg). However, when xanomeline was tested at 4 mg/kg, moderate dystonia was seen in two out of three monkeys. It is concluded that xanomeline inhibits D-amphetamine- and (-)-apomorphine-induced behavior in Cebus apella monkeys at doses that do not cause EPS. These data further substantiate that muscarinic receptor agonists may be useful in the pharmacological treatment of psychosis.

Figures
Products