1. Academic Validation
  2. Fasitibant prevents the bradykinin and interleukin 1β synergism on prostaglandin E₂ release and cyclooxygenase 2 expression in human fibroblast-like synoviocytes

Fasitibant prevents the bradykinin and interleukin 1β synergism on prostaglandin E₂ release and cyclooxygenase 2 expression in human fibroblast-like synoviocytes

  • Naunyn Schmiedebergs Arch Pharmacol. 2012 Aug;385(8):777-86. doi: 10.1007/s00210-012-0762-y.
S Meini 1 P Cucchi L Tinti S Niccolini F Bellucci C Catalani C Valenti M Galeazzi A Fioravanti C A Maggi
Affiliations

Affiliation

  • 1 Pharmacology Department, Menarini Ricerche S.p.A, Florence, Italy. smeini@menarini-ricerche.it
Abstract

This study investigates the effect of the selective and potent B(2) receptor antagonist fasitibant (MEN16132) on the proinflammatory effect of bradykinin (BK) and its interaction with interleukin 1β (IL-1β) in human synoviocytes. PGE(2) content was detected in the surnatants and COX-2 and COX-1 gene and protein expression determined in the cells. Radioligand binding ([(3) H]BK) and BK-induced inositolphosphate experiments were performed. Incubation of synoviocytes with BK induced a sustained production of PGE(2) and transient COX-2 gene expression that were prevented by pretreatment with fasitibant (1 μM, 30 min preincubation). IL-1β increased PGE(2) release and COX-2 expression more than BK alone. The combined treatment of cells with BK and IL-1β induced an even increase of released PGE(2) and COX-2 gene and protein expression indicating a synergistic rather than an additive effect, not related to an increase of B(2) receptors density or its coupling. These potentiating effects of BK on PGE(2) production and increased COX-2 expression produced by IL-1β were B(2)-receptor-mediated as fasitibant could prevent them. None of the treatments induced changes in the COX-1 expression. The synergistic PGE(2) production was abolished by the specific NF-kappaB inhibitor (BAY-117085), whereas specific inhibitors for the p38 (SB203580), JNK (SP600125), and ERK1/2 (PD98059) mitogen-activated protein kinases could prevent the prostanoid release. BK can potentiate the COX-2 gene expression and consequent prostanoid production induced by IL-1β. The prevention of this synergism by fasitibant indicates BK B(2) receptor blockade as an alternative symptomatic therapy for osteoarthritis.

Figures
Products