1. Academic Validation
  2. Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors

Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors

  • Blood. 2014 Dec 18;124(26):3924-31. doi: 10.1182/blood-2014-05-576652.
Lorraine Springuel 1 Tekla Hornakova 1 Elisabeth Losdyck 1 Fanny Lambert 1 Emilie Leroy 1 Stefan N Constantinescu 1 Elisabetta Flex 2 Marco Tartaglia 2 Laurent Knoops 3 Jean-Christophe Renauld 1
Affiliations

Affiliations

  • 1 Ludwig Institute for Cancer Research, Brussels Branch, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium;
  • 2 Istituto Superiore di Sanità, Rome, Italy; and.
  • 3 Ludwig Institute for Cancer Research, Brussels Branch, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Hematology Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
Abstract

The acquisition of growth signal self-sufficiency is 1 of the hallmarks of Cancer. We previously reported that the murine interleukin-9-dependent TS1 cell line gives rise to growth factor-independent clones with constitutive activation of the Janus kinase (JAK)- signal transducer and activator of transcription (STAT) pathway. Here, we show that this transforming event results from activating mutations either in JAK1, JAK3, or in both kinases. Transient and stable expression of JAK1 and/or JAK3 mutants showed that each mutant induces STAT activation and that their coexpression further increases this activation. The proliferation of growth factor-independent TS1 clones can be efficiently blocked by JAK inhibitors such as ruxolitinib or CMP6 in short-term assays. However, resistant clones occur upon long-term culture in the presence of inhibitors. Surprisingly, resistance to CMP6 was not caused by the acquisition of secondary mutations in the adenosine triphosphate-binding pocket of the JAK mutant. Indeed, cells that originally showed a JAK1-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK3, whereas cells that originally showed a JAK3-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK1. These observations underline the cooperation between JAK1 and JAK3 mutants in T-cell transformation and represent a new mechanism of acquisition of resistance against JAK inhibitors.

Figures
Products