1. Academic Validation
  2. Co-Encapsulation of Combretastatin-A4 Phosphate and Doxorubicin in Polymersomes for Synergistic Therapy of Nasopharyngeal Epidermal Carcinoma

Co-Encapsulation of Combretastatin-A4 Phosphate and Doxorubicin in Polymersomes for Synergistic Therapy of Nasopharyngeal Epidermal Carcinoma

  • J Biomed Nanotechnol. 2015 Jun;11(6):997-1006. doi: 10.1166/jbn.2015.2010.
Jinfang Zhu Xiaoping Xu Mengying Hu Liyan Qiu
Abstract

In this study, we designed biodegradable polymersomes for co-delivery of an antiangiogenic drug combretastatin-A4 phosphate (CA4P) and doxorubicin (DOX) to collapse tumor neovasculature and inhibit Cancer cell proliferation with the aim to achieve synergistic antitumor effects. The polymersomes co-encapsulating DOX and CA4P (Ps-DOX-CA4P) were prepared by solvent evaporation method using methoxy poly(ethylene glycol)-b-polylactide (mPEG-PLA) block copolymers as drug carriers. The resulting Ps-DOX-CA4P has vesicles shape with uniform sizes of about 50 nm and controlled co-encapsulation ratios of DOX to CA4P. More importantly, Ps-DOX-CA4P (1:10) showed strong synergistic cytotoxicity (combination index CI = 0.31) against human nasopharyngeal epidermal carcinoma (KB) cells. Furthermore, Ps-DOX-CA4P accumulated remarkably in KB tissues xenografts in nude mice. Consistent with these observations, Ps-DOX-CA4P (1:10) achieved significant antitumor potency because of fast tumor vasculature disruption and sustained tumor cells proliferation inhibition in vivo. The overall findings indicate that co-delivery of an antiangiogenic drug and a chemotherapeutic agent in polymersomes is a potentially promising strategy for Cancer therapy.

Figures
Products