1. Academic Validation
  2. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies

Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies

  • Eur J Med Chem. 2018 Oct 5:158:68-81. doi: 10.1016/j.ejmech.2018.08.063.
Leonardo Bonilla-Ramirez 1 Alexandra Rios 1 Miguel Quiliano 2 Gustavo Ramirez-Calderon 1 Iván Beltrán-Hortelano 2 Jean François Franetich 3 Luis Corcuera 4 Mallaury Bordessoulles 3 Ariane Vettorazzi 5 Adela López de Cerain 5 Ignacio Aldana 2 Dominique Mazier 3 Adriana Pabón 1 Silvia Galiano 6
Affiliations

Affiliations

  • 1 Grupo Malaria, Facultad de Medicina, Universidad de Antioquía (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia.
  • 2 Universidad de Navarra, Institute of Tropical Health (ISTUN), Campus Universitario, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Organic and Pharmaceutical Chemistry, Campus Universitario, 31008, Pamplona, Spain.
  • 3 Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL, 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
  • 4 Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Organic and Pharmaceutical Chemistry, Campus Universitario, 31008, Pamplona, Spain.
  • 5 Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, 31008, Pamplona, Spain.
  • 6 Universidad de Navarra, Institute of Tropical Health (ISTUN), Campus Universitario, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Organic and Pharmaceutical Chemistry, Campus Universitario, 31008, Pamplona, Spain. Electronic address: silvia.galiano@gmail.com.
Abstract

Emergence of drug resistance and targeting all stages of the Parasite life cycle are currently the major challenges in antimalarial chemotherapy. Molecular hybridization combining two scaffolds in a single molecule is an innovative strategy for achieving these goals. In this work, a series of novel quinoxaline 1,4-di-N-oxide hybrids containing either chloroquine or primaquine pharmacophores was designed, synthesized and tested against both chloroquine sensitive and multidrug resistant strains of Plasmodium falciparum. Only chloroquine-based compounds exhibited potent blood stage activity with compounds 4b and 4e being the most active and selective hybrids at this Parasite stage. Based on their intraerythrocytic activity and selectivity or their chemical nature, seven hybrids were then evaluated against the liver stage of Plasmodium yoelii, Plasmodium berghei and Plasmodium falciparum infections. Compound 4b was the only chloroquine-quinoxaline 1,4-di-N-oxide hybrid with a moderate liver activity, whereas compound 6a and 6b were identified as the most active primaquine-based hybrids against exoerythrocytic stages, displaying enhanced liver activity against P. yoelii and P. berghei, respectively, and better SI values than primaquine. Although both primaquine-quinoxaline 1,4-di-N-oxide hybrids slightly reduced the Infection of mosquitoes, they inhibited sporogony of P. berghei and compound 6a showed 92% blocking of transmission. In vivo liver efficacy assays revealed that compound 6a showed causal prophylactic activity affording parasitaemia reduction of up to 95% on day 4. Absence of genotoxicity and in vivo acute toxicity were also determined. These results suggest the approach of primaquine-quinoxaline 1,4-di-N-oxide hybrids as new potential dual-acting antimalarials for further investigation.

Keywords

Blood stage; Chloroquine; Hybrid drugs; Liver stage; Primaquine; Quinoxaline 1,4-di-N-Oxide.

Figures