1. Academic Validation
  2. Discovery and Structural Optimization of Acridones as Broad-Spectrum Antimalarials

Discovery and Structural Optimization of Acridones as Broad-Spectrum Antimalarials

  • J Med Chem. 2019 Apr 11;62(7):3475-3502. doi: 10.1021/acs.jmedchem.8b01961.
Rozalia A Dodean 1 2 Papireddy Kancharla 1 Yuexin Li 1 2 Victor Melendez 3 Lisa Read 3 Charles E Bane 3 Brian Vesely 3 Mara Kreishman-Deitrick 3 Chad Black 3 Qigui Li 3 Richard J Sciotti 3 Raul Olmeda 3 Thu-Lan Luong 3 Heather Gaona 3 Brittney Potter 3 Jason Sousa 3 Sean Marcsisin 3 Diana Caridha 3 Lisa Xie 3 Chau Vuong 3 Qiang Zeng 3 Jing Zhang 3 Ping Zhang 3 Hsiuling Lin 3 Kirk Butler 3 Norma Roncal 3 Lacy Gaynor-Ohnstad 3 Susan E Leed 3 Christina Nolan 3 Stephanie J Huezo 4 Stephanie A Rasmussen 4 Melissa T Stephens John C Tan Roland A Cooper 4 Martin J Smilkstein 2 Sovitj Pou 2 Rolf W Winter 1 2 Michael K Riscoe 1 2 Jane X Kelly 1 2
Affiliations

Affiliations

  • 1 Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.
  • 2 Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States.
  • 3 Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States.
  • 4 Department of Natural Sciences and Mathematics , Dominican University of California , San Rafael , California 94901 , United States.
Abstract

Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced Infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.

Figures