1. Academic Validation
  2. CYT387 Inhibits the Hyperproliferative Potential of Fibroblast-like Synoviocytes via Modulation of IL-6/JAK1/STAT3 Signaling in Rheumatoid Arthritis

CYT387 Inhibits the Hyperproliferative Potential of Fibroblast-like Synoviocytes via Modulation of IL-6/JAK1/STAT3 Signaling in Rheumatoid Arthritis

  • Immunol Invest. 2022 Aug;51(6):1582-1597. doi: 10.1080/08820139.2021.1994589.
Susmita Srivastava 1 Snigdha Samarpita 1 Ramamoorthi Ganesan 2 Mahaboobkhan Rasool 1
Affiliations

Affiliations

  • 1 Immunopathology Lab, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
  • 2 Immunology Program, Department of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, Florida, USA.
Abstract

Fibroblast-like synoviocytes (FLS) are the critical effector cells primarily involved in rheumatoid arthritis (RA) disease pathogenesis. Interleukin (IL)-6, a proinflammatory cytokine most abundantly expressed in the rheumatoid synovium, promotes Janus kinase (JAK)/signal transducer and transcriptional activator (STAT) signaling cascade activation in RA-FLS, thus leading to its aggressive phenotype, invasiveness, and joint destruction. Momelotinib (CYT387) is a selective small-molecule inhibitor of JAK1/2 and is clinically approved to treat myelofibrosis. However, the therapeutic efficacy of CYT387 in FLS mediated RA pathogenesis is less known. In the present study, we investigated the modulatory effect of CYT387 on IL6/JAK/STAT signaling cascade in FLS induced RA pathogenesis. CYT387 treatment inhibited IL-6 induced high proliferative and migratory potential of FLS cells isolated from adjuvant-induced arthritic (AA) rats. CYT387 reduced the expression of PRMT5, Survivin, and HIF-1α mediated by IL-6/sIL-6R in AA-FLS in a dose-dependent manner. The IL-6/sIL-6R induced expression of angiogenic factors such as VEGF and PIGF in AA-FLS cells was found downregulated by CYT387 treatment. Importantly, CYT387 significantly reduced IL-6/sIL-6R dependent activation of JAK1 and STAT3 and increased SOCS3 expression in AA-FLS cells. Next, the S3I-201 mediated blockade of STAT3 activation supported the inhibitory effect of CYT387 on IL-6/JAK1/STAT3 signaling cascade in AA-FLS. Overall, this study proves that CYT387 inhibits proliferation, migration, and pathogenic disease potential of FLS isolated from adjuvant-induced arthritic (AA) rats via targeting IL-6/JAK1/STAT3 signaling cascade.

Keywords

CYT387; Fibroblast-like synoviocytes; Interleukin 6; Janus kinases; rheumatoid arthritis.

Figures
Products
我们的 Cookie 政策

我们使用 Cookies 和类似技术以提高网站的性能和提升您的浏览体验,部分功能也使用 Cookies 帮助我们更好地理解您的需求,为您提供相关的服务。 如果您有任何关于我们如何处理您个人信息的疑问,请阅读我们的《隐私声明》