1. Academic Validation
  2. Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity

Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity

  • Eur J Med Chem. 2023 Nov 15;260:115724. doi: 10.1016/j.ejmech.2023.115724.
Sara Elsayed 1 Ahmed S Abdelkhalek 1 Samar Rezq 2 Mansour E Abu Kull 1 Damian G Romero 3 Hend Kothayer 4
Affiliations

Affiliations

  • 1 Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
  • 2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA.
  • 3 Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA.
  • 4 Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt. Electronic address: hendo1311@hotmail.com.
Abstract

Emerging evidence points to the intertwining framework of inflammation and oxidative stress in various ailments. We speculate on the potential impact of the magic shotgun approach in these ailments as an attempt to mitigate the drawbacks of current NSAIDs. Hence, we rationally designed and synthesized new tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine monomers/heterodimer as dual selective COX-2/15-LOX inhibitors with potent antioxidant activity. The synthesized compounds were challenged with diverse in vitro biological assays. Regarding the monomeric series, compound 5k exerted the highest COX-2 inhibitory activity (IC50 = 0.068 μM, SI = 160.441), while compound 5i showed the highest 15-LOX inhibitory activity (IC50 = 1.97 μM). Surpassing the most active monomeric members, the heterodimer 11 stemmed as the most potent and selective one in the whole study (COX-2 IC50 = 0.065 μM, SI = 173.846, 15-LOX IC50 = 1.86 μM). Heterodimer design was inspired by the cross-talk between the partner monomers of the COX-2 isoform. Moreover, some of our synthesized compounds could significantly reverse the LPS-enhanced production of ROS and proinflammatory cytokines (IL-6, TNF-α, and NO) in RAW 264.7 macrophages. Again, the heterodimer showed the strongest suppressor activity against ROS (IC50 = 18.79 μM) and IL-6 (IC50 = 4.15 μM) production outperforming the two references, celecoxib and diclofenac. Regarding NO suppressor activity, compound 5j (IC50 = 18.62 μM) surpassed the two references. Only compound 5a significantly suppressed TNF-α production (IC50 = 19.68 μM). Finally, molecular modeling simulated the possible binding scenarios of our synthesized thienopyrimidines within the active sites of COX-2 and 15-LOX. These findings suggest that those novel thienopyrimidines are promising leads showing pharmacodynamics synergy against the selected targets.

Keywords

Antioxidant; Dual COX-2/15-LOX inhibitors; Heterodimer; Inflammation; Thienopyrimidine.

Figures
Products