1. Academic Validation
  2. Daidzin and its antidipsotropic analogs inhibit serotonin and dopamine metabolism in isolated mitochondria

Daidzin and its antidipsotropic analogs inhibit serotonin and dopamine metabolism in isolated mitochondria

  • Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2198-203. doi: 10.1073/pnas.95.5.2198.
W M Keung 1 B L Vallee
Affiliations

Affiliation

  • 1 Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.
Abstract

Daidzin, a major active principle of an ancient Chinese herbal treatment (Radix puerariae) for alcohol abuse, selectively suppresses ethanol intake in all rodent models tested. It also inhibits mitochondrial aldehyde dehydrogenase (ALDH-2). Studies on ethanol intake suppression and ALDH-2 inhibition by structural analogs of daidzin established a link between these two activities and suggested that daidzin may suppress ethanol intake by inhibiting ALDH-2. ALDH-2 is a principal Enzyme involved in serotonin (5-HT) and dopamine (DA) metabolism. Thus, daidzin may act by inhibiting 5-HT and DA metabolism. To evaluate this possibility, we have studied the effect of daidzin and its analogs on 5-HT and DA metabolism in isolated hamster and rat liver mitochondria. Daidzin potently inhibits the formation of 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) from their respective amines in isolated mitochondria. Inhibition is concentration-dependent and is accompanied by a concomitant accumulation of 5-hydroxyindole-3-acetaldehyde and 3, 4-dihydroxyphenylacetaldehyde. Daidzin analogs that suppress hamster ethanol intake also inhibit 5-HIAA and DOPAC formation. Comparing their effects on mitochondria-catalyzed 5-HIAA or DOPAC formation and hamster ethanol intake reveals a positive correlation-the stronger the inhibition on 5-HIAA or DOPAC formation, the greater the ethanol intake suppression. Daidzin and its active analogs, at concentrations that significantly inhibit 5-HIAA formation, have little or no effect on mitochondria-catalyzed 5-HT depletion. It appears that the antidipsotropic action of daidzin is not mediated by 5-HT (or DA) but rather by its reactive intermediates 5-hydroxyindole-3-acetaldehyde and, presumably, 3, 4-dihydroxyphenylacetaldehyde as well, which accumulates in the presence of daidzin.

Figures
Products