1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-167843
    Alborixin Inhibitor
    Alborixin 是一种 PI3K-AKT 通路的抑制剂,可诱导自噬 (Autophagy)。Alborixin 通过上调自噬相关蛋白 (如 BECN1ATG5ATG7) 和增强溶酶体活性,促进细胞内外 β 淀粉样蛋白 (Amyloid-β) 的清除,减轻 Amyloid-β 介导的神经细胞毒性。Alborixin 有望用于阿尔茨海默症研究。
    Alborixin
  • HY-15856A
    Flupentixol

    氟哌噻吨

    Inhibitor
    Flupentixol 是一种具有口服活性的 D1/D2 多巴胺受体拮抗剂和新型 PI3K 抑制剂 (PI3Kα IC50=127 nM)。Flupentixol 具有对癌细胞的抗增殖活性并诱导细胞凋亡。Flupentixol 也可用于精神分裂症、焦虑和抑郁症的研究。
    Flupentixol
  • HY-108959
    D-87503 Inhibitor
    D-87503 是 PI3k/Akt/mTOR 的有效抑制剂,对 PI3kErk2IC50 分别为 62 nM 和 0.76 μM。D-87503 可有效抑制 PI3k/Akt/mTOR 信号通路的下游靶底物 AktRsk1 激酶。
    D-87503
  • HY-15268
    PP487 Inhibitor
    PP487 是一种酪氨酸激酶/PI(3)Ks 双重抑制剂,其对 DNA-PKmTORHckSrcEGFREphB4PDGFRIC50 值分别为 0.017 μM、0.072 μM、0.004 μM、0.01 μM、0.55 μM、0.22 μM 和 < 0.01 μM。PP487 可以用于癌症的研究。
    PP487
  • HY-19535B
    Nemiralisib succinate Inhibitor
    Nemiralisib Succinate 是一种有效的选择性 PI3Kδ 抑制剂,pKi 为 9.9。
    Nemiralisib succinate
  • HY-124647
    PI3Kα-IN-1 Inhibitor
    PI3Kα-IN-1 是一种 PI3Kα 抑制剂 (IC50 < 0.5 nM),并且还抑制 mTOR (IC 50: 104 nM)。
    PI3Kα-IN-1
  • HY-114457
    Phosphatidylinositol 4,5-bisphosphate
    Phosphatidylinositol 4,5-bisphosphate (L-alpha-Phosphatidylinositol-4,5-bisphosphate) 是细胞膜上的一种磷脂成分。Phosphatidylinositol 4,5-bisphosphate 作为一种主要信使,是磷脂酶 C (PLC) 和磷酸肌醇 3-激酶 (PI3K) 的底物。
    Phosphatidylinositol 4,5-bisphosphate
  • HY-149634
    PI3Kδ-IN-17 Inhibitor
    PI3Kδ-IN-17 (Compound S5) 是一种有效的 PI3Kδ 抑制剂,IC50 为 2.82?nM。PI3Kδ-IN-17 在 SU-DHL-6 细胞中表现出强烈的增殖 (proliferation) 活性 (IC50 = 0.035 μM)。
    PI3Kδ-IN-17
  • HY-159892
    PD-1/PD-L1-IN-54 Activator
    PD-1/PD-L1-IN-54 (Compound 6) 是一种中等亲和力的 PD-1/PD-L1 抑制剂 (KD: PD-1, 55.8 μM; PD-L1, 46.4 μM; IC50: 88.6 μM)。其抑制 PD-1/PD-L1 相互作用,且通过激活 CD8+ T 细胞,上调 PD-1 表达和提高 IFN-γIL-2 的分泌展现出抗癌活性。PD-1/PD-L1-IN-54 抑制癌细胞增殖并促进凋亡 (Apoptosis)。PD-1/PD-L1-IN-54 也通过与 PD-1/PD-L1 相关的 PI3K/Akt 通路调节 T 细胞免疫。
    PD-1/PD-L1-IN-54
  • HY-158688
    PI3Kδ-IN-21 Inhibitor
    PI3Kδ-IN-21 (Compound 31) 磷酸肌醇 3-激酶 δ (PI3Kδ) 的选择性抑制剂,IC50 为 13.6 nM。PI3Kδ-IN-21 通过 PI3K/AKT/mTOR 信号通路抑制 T 细胞的增殖和分化。PI3Kδ-IN-21 在大鼠模型中表现出良好的药代动力学特征,并在髓磷脂少突胶质细胞糖蛋白 (MOG) 诱导的 EAE 模型中表达改善实验性自身免疫性脑脊髓炎的活性。
    PI3Kδ-IN-21
  • HY-N0859A
    Schisanhenol B Ligand
    Schisanhenol B 是五味子的活性成分之一。Schisanhenol B 是酪氨酸酶的抑制剂。Schisanhenol B 与 PIK3CG 具有良好的结合活性,可用于心力衰竭的研究。
    Schisanhenol B
  • HY-123849
    SN32976 Inhibitor
    SN32976 是一种有效的选择性 I 类 PI3KmTOR 抑制剂,对 PI3KαPI3KβPI3KγPI3KδmTORIC50 值分别为 15.1 nM、461 nM、110 nM、134 nM 和 194 nM。SN32976 在其他 442 种激酶中表现出高选择性。SN32976 具有抗癌活性。
    SN32976
  • HY-153703
    PI3Kγ inhibitor 7 Inhibitor
    PI3Kγ inhibitor 7 (compound 2) 是一种有效的具有口服活性的 PI3Kγ 抑制剂,其对 PI3Kα、PI3Kβ、PI3Kγ、PI3Kδ 的 IC50 值分别为 4768、878.1、3.42、355.2 nM。PI3Kγ inhibitor 7 显示出抗肿瘤活性。
    PI3Kγ inhibitor 7
  • HY-N0716
    Berberine

    黄连素

    Activator
    Berberine (Natural Yellow 18) 是从中草药黄连中分离出来的一种生物碱,常用作抗生素。Berberine (Natural Yellow 18) 诱导活性氧 (ROS) 生成并抑制 DNA 拓扑异构酶 (topoisomerase)。Berberine (Natural Yellow 18) 具有抗肿瘤特性。硫酸盐形式 (HY-N0716B) 可提高生物利用度。
    Berberine
  • HY-153120
    PI3K/mTOR Inhibitor-13 Inhibitor
    PI3K/mTOR Inhibitor-13 是一种具有口服活性的磷酸肌醇 3-激酶 (PI3K) 和 mTOR 激酶双重抑制剂。PI3K/mTOR Inhibitor-13 在性疾病、实体瘤和特发性肺纤维化 (IPF) 中有潜在应用。
    PI3K/mTOR Inhibitor-13
  • HY-145432
    PI3K-IN-28 Inhibitor
    PI3K-IN-28 (Compound 6c) 是一种有效的 PI3K 抑制剂。PI3K-IN-28 显示出最有效的活性,对 MCF-10a 的毒性作用较低。PI3K-IN-28 的半数最大抑制浓度 (IC50, μM) 值为 5.8、2.3 和 7.9。PI3K-IN-28 是最有效的一种,选择性指数 (SI) 为 39,被认为是进一步优化抗癌活性分子的潜在先导。
    PI3K-IN-28
  • HY-169121
    DA-143 Inhibitor
    DA-143 是一种选择性 DNA-PKcs 抑制剂 (IC50: 2.5 nM),对 mTOR、PI3KΔ 和 ATM 的 IC50 分别为 280 nM、106 nM 和 6,594 nM。DA-143 可阻断 DNA-PKcs 底物的磷酸化。DA-143 可增强癌细胞对阿霉素 (HY-15142) 的敏感性。
    DA-143
  • HY-146789
    PI3Kδ/γ-IN-2 Inhibitor
    PI3Kδ/γ-IN-2 是一种有效的 PI3KδPI3Kγ 双重抑制剂,IC50 分别为 1 nM 和 4.3 nM。PI3Kδ/γ-IN-2 具有良好的口服生物利用度。PI3Kδ/γ-IN-2 具有抗 B 细胞恶性肿瘤的潜力。
    PI3Kδ/γ-IN-2
  • HY-162023
    mTOR inhibitor-10 Inhibitor
    mTOR inhibitor-10 (Compound 9c) 是 mTOR 的选择性抑制剂。mTOR inhibitor-10 抑制 mTORPI3K-αIC50分别为 0.7 和 825 nM。mTOR inhibitor-10 抑制 LNCaP 增殖,IC50为 87 nM。
    mTOR inhibitor-10
  • HY-N0022R
    Isoacteoside (Standard)

    异麦角甾苷 (Standard)

    Inhibitor
    Isoacteoside (Standard) 是 Isoacteoside 的分析标准品。本产品用于研究及分析应用。Isoacteoside是天然产物,能显著地抑制糖基化终产物的形成。Isoacteoside standard 调节 AKT/PI3K/m-TOR/NF-κB 信号通路,诱导 OVCAR-3 细胞凋亡 (apoptosis)。Isoacteoside standard 具有抗肿瘤、抗炎、抗肥胖和神经保护作用[sup>[2]
    Isoacteoside (Standard)
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.