1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-162143
    SKI-349 Inhibitor 99.58%
    SKI-349 是一种鞘氨醇激酶 1/2 (SPHK1/2) 和微管聚合 (MDA) 的双重靶向抑制剂。SKI-349 具有抗癌活性。SKI-349 能抑制肝细胞活力、侵袭和 AKT/mTOR 信号通路。
    SKI-349
  • HY-101776
    Desmethyl-VS-5584 Inhibitor
    Desmethyl-VS-5584 是 VS-5584 的二甲基类似物,VS-5584 是一种具有吡啶 [2,3-d] 嘧啶结构的有效且有选择性 mTOR/PI3K 双重抑制剂。
    Desmethyl-VS-5584
  • HY-169022
    4-FPBUA Inhibitor
    4-FPBUA 是地衣酸 (HY-W015883) 的半合成类似物,可以增强基于细胞的血脑屏障 (BBB) 功能,并增加 β 淀粉样蛋白 (Aβ) 在单层细胞中的转运。4-FPBUA 也是 mTOR 的抑制剂,能增强细胞自噬 (Autophagy) 作用,从而在体内逆转 BBB 的破坏,用于阿尔茨海默病的研究。
    4-FPBUA
  • HY-141701
    mTOR/HDAC-IN-1 Inhibitor
    mTOR/HDAC-IN-1 (Compound 50) 是一个具有选择性的 mTORHDAC 双重抑制剂,对mTOR和HDAC1的 IC50 分别为0.49和0.91 nM。 mTOR/HDAC-IN-1 可作为抗癌活性分子 (anti-cancer) 进行研究。
    mTOR/HDAC-IN-1
  • HY-118712
    mTOR inhibitor WYE-23 Inhibitor
    mTOR inhibitor WYE-23 是 mTOR 抑制剂,IC50 为 0.45 nM。mTORPI3Kα 具有选择性,IC50 为 661 nM。mTOR inhibitor WYE-23 具有抗肿瘤活性。
    mTOR inhibitor WYE-23
  • HY-113038
    D-α-Hydroxyglutaric acid

    2-羟基-D-谷氨酸; (R)-2-羟基戊二酸

    Inhibitor
    D-α-Hydroxyglutaric acid ((R)-2-Hydroxyglutarate) 是神经代谢疾病 D-2-羟基戊二酸尿症中积累的主要代谢产物。D-α-Hydroxyglutaric acid 是 α-酮戊二酸 (α-KG) 的弱竞争拮抗剂,可抑制多种 α-KG 依赖性双加氧酶 (dioxygenases),Ki 为 10.87 mM。D-α-Hydroxyglutaric acid 可增加活性氧 (ROS) 的产生。D-α-Hydroxyglutaric acid 还可结合并抑制 ATP 合酶并抑制 mTOR 信号传导。
    D-α-Hydroxyglutaric acid
  • HY-137315S
    TML-6-d3
    TML-6-d3 是 TML-6 的氘代物。 TML-6 是一种口服有效的姜黄素衍生物,抑制 β-淀粉样前体蛋白和 β-淀粉样蛋白 () 的合成。TML-6 上调 Apo E,抑制 NF-κBmTOR,并增加抗氧化 Nrf2 基因的活性。TML-6 具有用于阿尔茨海默氏病 (AD) 研究的潜力。
    TML-6-d<sub>3</sub>
  • HY-N0486S4
    L-Leucine-d7

    L-亮氨酸 d7

    Activator
    L-Leucine-d7 是 L-Leucine 的氘代物。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-d<sub>7</sub>
  • HY-154958
    mTOR inhibitor-12 Inhibitor
    mTOR inhibitor-12 (Compound 11) 是一种选择性脑渗透性 mTOR 抑制剂,无遗传毒性风险。mTOR inhibitor-12 可用于中枢神经系统疾病的研究。
    mTOR inhibitor-12
  • HY-18953
    mTOR inhibitor-23 Inhibitor
    mTOR inhibitor-23 (compound DHM25) 是一种选择性、竞争性、不可逆的共价 mTOR 抑制剂。mTOR inhibitor-23 的抑制机制主要是通过其与 ATP 口袋内的亲核氨基酸共价相互作用的能力发生的。mTOR inhibitor-23 对三阴性乳腺肿瘤细胞系发挥有效的抗肿瘤活性。
    mTOR inhibitor-23
  • HY-P5984
    Thioether-cyclized helix B peptide, CHBP Inhibitor
    Thioether-cyclized helix B peptide, CHBP 可通过抑制 mTORC1 和激活 mTORC2 诱导的自噬 (autophagy),从而提高代谢稳定性和肾脏保护作用。
    Thioether-cyclized helix B peptide, CHBP
  • HY-147285
    PI3K/mTOR Inhibitor-9 Inhibitor
    PI3K/mTOR Inhibitor-9 (Compound 1) 是一种有效的 mTORPI3K 抑制剂,对 mTOR、PI3Kα、PI3Kγ 和 PI3KδIC50 分别为 38 nM、6.6 μM、6.6 μM 和 0.8 μM。
    PI3K/mTOR Inhibitor-9
  • HY-15269
    PP30 Inhibitor
    PP30 是一种 TORKinib,是一种有效的、选择性的、ATP 竞争的 mTOR 抑制剂,IC50 为 80 nM。
    PP30
  • HY-118704
    P-2281 Inhibitor 99.81%
    P-2281 是一种 mTOR 抑制剂,具有抗癌和抗炎功效。P-2281 通过抑制 T 细胞功能来抑制葡聚糖硫酸钠 (DSS) 诱导的结肠炎,并且在人类结肠炎的小鼠模型中有效。
    P-2281
  • HY-147614
    PI3K/mTOR Inhibitor-7 Inhibitor
    PI3K/mTOR Inhibitor-7 (Compound 19i) 是一种有效的 PI3K/mTOR 双重抑制剂。PI3K/mTOR Inhibitor-7 的效力比阳性对照 gedatolisib 高 4.7 倍(0.3 对 1.4 μM,IC50 值)。PI3K/mTOR Inhibitor-7 在 10 μM 时显着抑制 PI3K/Akt/mTOR 信号通路。PI3K/mTOR Inhibitor-7 具有研究癌症疾病的潜力。
    PI3K/mTOR Inhibitor-7
  • HY-154957
    mTOR inhibitor-11 Inhibitor
    mTOR inhibitor-11 (Compound 9) 是一种可穿透大脑屏障的 mTOR抑制剂(IC50 : 对 pS6 为21 nM)。mTOR inhibitor-11 还抑制 pCHK1 和 PDE4D,IC50分别为17.2和17.0 μM。mTOR inhibitor-11 可用于中枢神经系统疾病研究。
    mTOR inhibitor-11
  • HY-N0486S7
    L-Leucine-1-13C,15N

    L-亮氨酸 1-13C,15N

    Activator ≥98.0%
    L-Leucine-1-13C,15N 是带有 13C 标记和 15N 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-1-<sup>13</sup>C,<sup>15</sup>N
  • HY-P1823
    C-Reactive Protein (CRP) (174-185) Modulator 99.83%
    C-Reactive Protein (CRP) 是一种抗肺炎球菌血浆蛋白,可作为炎症标志物。C-Reactive Protein 可以通过激活补体保护小鼠免受肺炎球菌感染。C-Reactive Protein 可以通过 CD64/AKT/mTOR 通路抑制 caspase-3/9 的激活从而促进舌鳞状细胞癌小鼠的化疗耐药性。
    C-Reactive Protein (CRP) (174-185)
  • HY-N0486S11
    L-Leucine-d

    L-亮氨酸 d1

    Activator
    L-Leucine-d 是 L-Leucine 的氘代物。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-d
  • HY-137996
    Dehydrovomifoliol Inhibitor
    Dehydrovomifoliol 是 AKT/mTOR 的双重抑制剂。Dehydrovomifoliol 通过抑制 AKT/mTOR 信号通路来减少脂质积累和脂肪生成。Dehydrovomifoliol用于非酒精性脂肪性肝病 (NAFLD) 的研究。
    Dehydrovomifoliol
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.