1. Academic Validation
  2. The mechanism by which ATP regulates alcoholic steatohepatitis through P2X4 and CD39

The mechanism by which ATP regulates alcoholic steatohepatitis through P2X4 and CD39

  • Eur J Pharmacol. 2022 Feb 5;916:174729. doi: 10.1016/j.ejphar.2021.174729.
Guo-Qing Xia 1 Jun-Nan Cai 1 Xue Wu 1 Qian Fang 1 Ning Zhao 1 Xiong-Wen Lv 2
Affiliations

Affiliations

  • 1 Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
  • 2 Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China. Electronic address: lyuxw@ahmu.edu.cn.
Abstract

Alcoholic liver disease caused by chronic excessive drinking has become one of the most common types of liver disease. Alcohol-induced inflammatory immune responses play a central role in the development of alcohol-associated steatohepatitis. The content and expression of ATP and P2X4 in the livers of alcoholic steatohepatitis mice are significantly increased. The content of ATP increased by 20 percent and the expression of P2X4 Receptor protein was 1.3 times higher than that in the livers of normal mice. Treatment with 5-BDBD, a P2X4 receptor-specific inhibitor, significantly reduced alcohol-induced liver inflammation and lipid deposition. In RAW264.7 cell experiments, 5-BDBD inhibited the expression of P2X4 and alleviated alcohol-induced inflammation, while the CD39-specific inhibitor POM-1 reduced extracellular ATP degradation and promoted the expression of P2X4, thereby exacerbating inflammation. After treatment with 5-BDBD, P2X4 Receptor protein expression decreased by 0.2 times and after treatment with POM-1, P2X4 Receptor protein expression increased by 0.1 times compared to the alcohol-stimulated group. In addition, inhibition of P2X4 expression in RAW264.7 cells reduced calcium influx in RAW264.7 cells. P2X4 may induce the activation of NLRP3 inflammasomes by mediating calcium influx, thus exacerbating the inflammatory response, and inhibition of P2X4 expression can effectively block this process. Conclusion: These results suggest that the ATP-P2X4 signaling pathway promotes the inflammatory response in alcoholic steatohepatitis and that CD39 may play a protective role in regulating P2X4 expression by hydrolyzing ATP. In conclusion, the CD39 and ATP-P2X4 signaling pathways may be potential therapeutic targets for alcoholic steatohepatitis.

Keywords

ATP; Alcoholic hepatic disease; CD39; NLRP3; P2X4.

Figures
Products