1. 重组蛋白
  2. Enzymes & Regulators
  3. Serine/Threonine Kinase Proteins
  4. Glycogen Synthase Kinase-3 (GSK-3)

Glycogen Synthase Kinase-3 (GSK-3)  (糖原合成酶激酶 3)

目录号 产品名 / 同用名 种属 表达系统
  • HY-P74114
    GSK-3 beta Protein, Human (sf9, His)

    Glycogen synthase kinase-3 beta; GSK-3 beta; Gsk3b

    Human Sf9 insect cells
    GSK-3β 是一种丝氨酸-苏氨酸激酶和葡萄糖稳态的负调节因子。GSK-3β 与神经退行性疾病如帕金森病和阿尔茨海默病相关。GSK-3β 在多种组织中广泛表达,尤其在大脑和甲状腺中水平较高。GSK-3 beta Protein, Human (sf9, His) 是重组的 GSK-3 β 蛋白,由 Sf9 insect cells 表达,带有 N-His 标签。
  • HY-P73090
    GSK-3 beta Protein, Mouse (sf9, His)

    Glycogen synthase kinase-3 beta; GSK-3 beta; Gsk3b

    Mouse Sf9 insect cells
    GSK-3 beta 是一种调节细胞昼夜节律、自噬和细胞凋亡的蛋白激酶。GSK-3 beta Protein, Mouse (sf9, His) 是重组的 GSK-3 β 蛋白,由 Sf9 insect cells 表达,带有 N-10*His 标签。GSK-3 beta Protein, Mouse (sf9, His) 全长 420 个氨基酸,分子量约为 ~47 kDa。
  • HY-P700591
    GSK-3 beta Protein, Human (P. pastoris, His)

    Serine/threonine-protein kinase GSK3B

    Human P. pastoris
    GSK-3 beta 是一种活性蛋白激酶,可调节多种细胞过程。它通过磷酸化糖原合酶、CTNNB1 和 JUN 等底物来负向调节葡萄糖稳态、Wnt 信号传导和转录因子。GSK-3 beta Protein, Human (P. pastoris, His) 是重组的 GSK-3 β 蛋白,由 P. pastoris 表达,带有 N-6*His 标签。
  • HY-P701690
    GSK3α Protein, Human (Sf9, GST)

    GSK3A; Glycogen synthase kinase-3 alpha; GSK-3 alpha; Serine/threonine-protein kinase GSK3A

    Human Sf9 insect cells
    GSK3B 是一种参与多种细胞过程的蛋白质。它调节糖原合成、Wnt 信号传导、细胞凋亡、自噬和神经元功能。它使特定蛋白质磷酸化和失活,影响它们在细胞中的活性和功能。GSK3α Protein, Human (Sf9, GST) 是重组的 GSK3α 蛋白,由 Sf9 insect cells 表达,带有 N-GST 标签。GSK3α Protein, Human (Sf9, GST) 全长 482 个氨基酸,分子量约为 ~77.5 kDa。
目录号 产品名 作用方式 纯度

Glycogen synthase kinase 3 (GSK-3) is a multifunctional serine/threonine kinase found in all eukaryotes. GSK-3 is one of the few signaling mediators that play central roles in a diverse range of signaling pathways, including those activated by Wnt, PI3K, growth factors, cytokines, and ligands for G protein-coupled receptors. The PI3K pathway is known for regulating metabolism, cell growth, and cell survival. The PI3K activity is stimulated by diverse oncogenes and growth factor receptors. PI3K-mediated production of PIP3 leads to the activation of Akt. The activation of Akt leads to the phosphorylation of GSK-3, which is active in resting cells, but is inactivated by the phosphorylation. The GSK-3 has been linked to the regulation of an assembly of transcription factors, including β-catenin, NF-κB, c-Jun, CREB, and STAT. Thus, the altered activity of GSK-3 causes various effects on cytokine expression. 

 

In the absence of Wnt signaling, β-catenin is phosphorylated by CK1 and GSK-3. This phosphorylation leads to recognition by β-TrCP, leading to the ubiquitylation of β-catenin and degradation by the proteasome. Upon binding of a lipid-modified Wnt protein to the receptor complex, a signaling cascade is initiated. LRP is phosphorylated by CK1/CK2 and GSK-3, and Axin is recruited to the plasma membrane. The kinases in the β-catenin destruction complex are inactivated and β-catenin translocates to the nucleus to form an active transcription factor complex with TCF, leading to transcription of a large set of target genes.

 

Some endogenous growth factors could bind to and activate the tyrosine kinase receptor. This facilitates the recruitment of other proteins (SHC, SOS), which results in the activation of the ERK-MAPK cascade and the inhibition of GSK-3. GSK-3 exerts many cellular effects: it regulates cytoskeletal proteins, and is important in determining cell survival/cell death. GSK-3 has also been identified as a target for the actions of lithium. GSK-3 can inhibit glycogen synthase, the enzyme that catalyzes the transfer of glucose from UDPG to glycogen[1][2].

 

Reference:

[1]. Brenner D, et al. Regulation of tumour necrosis factor signalling: live or let die.Nat Rev Immunol. 2015 Jun;15(6):362-74. 
[2]. Conrad M, et al. Regulated necrosis: disease relevance and therapeutic opportunities.Nat Rev Drug Discov. 2016 May;15(5):348-66.