1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-136765
    PI3K-IN-11 Inhibitor
    PI3K-IN-11 (compound 13) 是 PI3K 抑制剂,选择性抑制 PI3Kα、PI3Kβ、PI3K 和 PI3Kδ(IC50s 分别为 6.4、13、8 和 11 nM),而非 mTOR(IC50=2.9 μM)。PX-13-17OH 对 20 种脂质和蛋白激酶中的 PI3K 的选择性超过 420 倍。当浓度范围为 0.03 至 1 μg/mL 时,PX-13-17OH 可抑制 PTEN 阴性 U87MG 细胞中 Akt 和 S6 激酶 (S6K) 的磷酸化。当剂量范围为 2.5 至 10 mg/kg 时,可抑制 U87MG 小鼠异种移植模型中的肿瘤生长。
    PI3K-IN-11
  • HY-167952
    mTOR inhibitor-25
    mTOR inhibitor-25是一种选择性优于PI3K的酶抑制剂,具有良好的抗癌活性。mTOR inhibitor-25对mTOR的抑制作用显示出强效,可能用于研究白血病、皮肤癌、乳腺癌、肺癌和结肠癌。mTOR inhibitor-25在细胞增殖实验中展现出优异的活性,对PI3K的抑制能力则相对较弱。
    mTOR inhibitor-25
  • HY-121684
    Ramentaceone Inhibitor
    Ramentaceone (7-Methyljuglon) 是一种可从 Drosera sp. 提取得到的萘醌,可抑制 PI3K 活性。Ramentaceone (7-Methyljuglon) 可降低 PI3K 蛋白表达,并抑制 Akt 的磷酸化。Ramentaceone (7-Methyljuglon) 可诱导凋亡。
    Ramentaceone
  • HY-16122A
    CAL-130 Inhibitor
    CAL-130 是一种 PI3KδPI3Kγ 抑制剂,IC50 分别为 1.3 和 6.1 nM。
    CAL-130
  • HY-N2393A
    Kukoamine B mesylate

    地骨皮乙素甲磺酸盐

    Inhibitor
    Kukoamine B 是一种精胺生物碱,是一种强效的双重 LPS 和 CpG DNA 抑制剂,其 Kd 值分别为 1.23 µM 和 0.66 µM。Kukoamine B 具有抗炎、抗糖尿病、抗氧化、抗骨质疏松和神经保护作用。Kukoamine B 具有用于脓毒症研究的潜力。
    Kukoamine B mesylate
  • HY-120471
    AM-0687 Inhibitor
    AM-0687 是 PI3Kδ 的选择性抑制剂,IC50 为 2.9 nM。AM-0687 可降低 IgGIgM 特异性抗体水平,抑制 anti-IgM/CD40L 诱导的人类 B 细胞增殖 (IC50=0.8 nM) 和 AKT 磷酸化 (IC50=0.7 nM),并表现出抗炎活性。
    AM-0687
  • HY-121672
    PI3K-IN-7 Inhibitor
    PI3K-IN-7 (Compound C96) 是一种 PI3K 抑制剂。PI3K-IN-7 抑制 AKT 的磷酸化和 AKT 下游蛋白的激活。PI3K-IN-7 诱导肿瘤细胞凋亡 (Apoptosis)。PI3K-IN-7 对正常细胞的毒性较低。PI3K-IN-7 可用于急性和慢性白血病、多发性骨髓瘤、淋巴瘤的研究。
    PI3K-IN-7
  • HY-124535
    TGX-115 Inhibitor
    TGX-115 是一种细胞渗透性和有效的 PI3-K 异构体 p110β/p110δ 抑制剂 (p110β IC50 值为 0.13 μM,p110δ IC50 值为 0.63 μM)。TGX-115 是一种调节血小板粘附过程的酶,可抑制磷酸肌苷 3-激酶。TGX-115 可用于对冠状动脉闭塞,中风,急性冠状动脉综合征,急性心肌梗塞,血管再狭窄,动脉硬化和不稳定心绞痛等心血管疾病的研究。
    TGX-115
  • HY-N1412R
    1,3-Dicaffeoylquinic acid (Standard)

    1,3-二咖啡酰奎宁酸 (Standard)

    Activator
    1,3-Dicaffeoylquinic acid (Standard) 是 1,3-Dicaffeoylquinic acid 的分析标准品。本产品用于研究及分析应用。1,3-Dicaffeoylquinic acid是咖啡酰奎宁酸衍生物,具有抗氧化活性和自由基清除活性。
    1,3-Dicaffeoylquinic acid (Standard)
  • HY-15288
    PI3kδ inhibitor 1 Inhibitor
    PI3kδ inhibitor 1 是一种有效的选择性 PI3Kδ 抑制剂,IC50 为 3.8 nM。
    PI3kδ inhibitor 1
  • HY-122593
    PI3Kδ-IN-5 Inhibitor 99.62%
    PI3Kδ-IN-5 (compound 7n) 是 PI3Kδ 的高效选择性抑制剂,IC50 值为 0.9 nM。
    PI3Kδ-IN-5
  • HY-18310
    NIBR-17 Inhibitor
    NIBR-17 是一种 I 类 PI3K 的泛抑制剂,具有合适的药代动力学特性。NIBR-17 抑制肿瘤生长。
    NIBR-17
  • HY-112602
    PI3K/mTOR Inhibitor-1 Inhibitor
    PI3K/mTOR Inhibitor-1 是一种有效的,口服生物可利用的双重 PI3K/mTOR 抑制剂,抑制 PI3Kα/PI3Kβ/PI3Kγ/PI3KδmTORIC50 分别为 20/376/204/46 nM 和 186 nM。具有抗肿瘤活性。
    PI3K/mTOR Inhibitor-1
  • HY-112439
    PI3Kdelta inhibitor 1 Inhibitor
    PI3Kdelta inhibitor 1 (Compound 5d) 是有效的,具有口服活性的选择性 PI3Kδ 抑制剂,IC50 为1.3 nM。
    PI3Kdelta inhibitor 1
  • HY-112286
    PI3Kγ inhibitor 2 Inhibitor
    PI3Kγ inhibitor 2 (Compound 16) 是口服生物可利用的 CNS 可渗透的,选择性 PI3Kγ 抑制剂,Ki 为 4 nM。
    PI3Kγ inhibitor 2
  • HY-118236
    (S)-AZD 6482
    (S)-AZD6482 ((S)-KIN-193) 是一种高效、选择性 ATP 竞争性 PI3Kβ 抑制剂,IC(50) 为 0.01 μM,它可以降低体外人类脂肪细胞胰岛素诱导的葡萄糖摄取,IC(50) 为 4.4 μM。
    (S)-AZD 6482
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.