1. Academic Validation
  2. Pyrolae herba alleviates cognitive impairment via TREM2 signaling to modulate neuroinflammation and neurogenesis in lipopolysaccharide-treated mice hippocampus

Pyrolae herba alleviates cognitive impairment via TREM2 signaling to modulate neuroinflammation and neurogenesis in lipopolysaccharide-treated mice hippocampus

  • J Ethnopharmacol. 2023 Sep 20;117214. doi: 10.1016/j.jep.2023.117214.
Yan Sun 1 Hailou Zhang 2 Liu Ruiyi 3 Huang Rumin 1 Xiangrui Zhang 1 Shihan Zhou 1 Lei Wu 4 Boran Zhu 5 Haoxin Wu 6
Affiliations

Affiliations

  • 1 Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China.
  • 2 Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, PR China.
  • 3 Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, PR China.
  • 4 Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China.
  • 5 Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China. Electronic address: 290515@njucm.edu.cn.
  • 6 Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China. Electronic address: haoxinwu@njucm.edu.cn.
Abstract

ETHNOPHARMACOLOGICAL RELEVANC: ePyrolae herba (PH), a kind of Chinese herb, has been identified to have an anti-inflammatory effect, while the potential for treating cognitive impairment (CI), as well as the underlying mechanisms, is unclear. Currently, the interaction between neuroinflammation and neural function play a critical role in pathophysiology of CI.

Aim of the study: To elucidate therapeutic effect of PH for CI as well as its underlying mechanisms with LPS-induced mice model.

Methods and materials: In this study, male C57BL6/J mice received lipopolysaccharide (LPS) injection for 10 days to establish CI model and were administrated with PH for 14 days. We used piracetam as a positive control. Memory and spatial function was tested by Morris water maze (MWM). The level of inflammation-related cytokines (TNF-α, IL-1β, IL-10, IL-6) were determined by enzyme-linked immunosorbent assay (ELISA) in serum and western blot in hippocampus. Immunofluorescence (IF) was used to measure the levels of ionized calcium binding linker molecule 1 (IBA-1), glial fibrillary acidic protein (GFAP), BrdU, Ki67 and doublecortin (DCX) in hippocampus. The mRNA Sequencing was used to screen the potential target of PH with therapeutic CI. Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the gene alteration of triggering receptor expressed on myeloid cells 2 (TREM2) in hippocampus. We used western blot to determine protein expressions of TREM2 and its related signaling, as well as synaptic proteins in hippocampus.

Results: The results revealed that LPS contributed to CI, and PH or piracetam treatment significantly ameliorated CI in MWM test. LPS contributed to increasing expressions of TNF-α and IL-1β in serum and hippocampus, which both reversed by PH or piracetam. PH or piracetam could inhibit the activation of glial cells including microglia and astrocyte in the hippocampus in LPS-induced CI model. The mRNA Sequencing and RT-PCR results showed that LPS significantly increased the gene expression of TREM2, which was reversed by PH. The alteration of TREM2 expression was the most significant among the 10 genes (TREM2, Slc24a2, Ptch2, Gck, Il1rapl1, Cadps2, Btbd11, Secisbp2l, Tenm3 and Prepl) in hippocampus. Protein results showed that LPS upregulated the expressions of TREM2 and its related proteins including DAP12, spleen tyrosine kinase (Syk) phosphorylation and ADAM 10, which were all reversed by PH or piracetam in hippocampus. Furthermore, LPS was capable of reducing the expression of BrdU and DCX co-labeled positive cells in hippocampal dentate gyrus (DG), which was reversed only by PH. Moreover, PH or piracetam treatment significantly increased the expression of Ki67 and DCX co-labeled positive cells in hippocampal DG. The expression of synapsin1 was obviously decreased by LPS and was significantly reversed by PH or piracetam.

Conclusions: PH could alleviate CI by suppressing the secretion of pro-inflammatory cytokines and mitigating astrocyte activity by restraining microglia's activation in hippocampus, further facilitating neurogenesis and proliferation, thereby enhancing synaptic plasticity. This study highlighted on the clinical application of PH, which might promote the use of phytomedicine in CI patients.

Keywords

Cognitive impairment; Neurogenesis; Neuroinflammation; Pyrolae herba; Synaptic plasticity; TREM2.

Figures
Products