1. Signaling Pathways
  2. NF-κB
  3. NF-κB

NF-κB (核因子κB)

Nuclear factor-κB; Nuclear factor-kappaB

NF-κB(活化 B 细胞的核因子 κ 轻链增强子)是一种控制 DNA 转录的蛋白质复合物。NF-κB 存在于几乎所有动物细胞类型中,并参与细胞对压力、细胞因子、自由基、紫外线照射、氧化 LDL 以及细菌或病毒抗原等刺激的反应。NF-κB 在调节对感染的免疫反应中起着关键作用。NF-κB 的错误调节与癌症、炎症和自身免疫性疾病、感染性休克、病毒感染和免疫发育不当有关。NF-κB 还与突触可塑性和记忆过程有关。哺乳动物 NF-κB 家族中有五种蛋白质:NF-κB1、NF-κB2、RelA、RelB、c-Rel。

NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein complex that controls transcription of DNA. NF-κB is found in almost all animal cell types and is involved in cellular responses to stimuli such as stress, cytokines, free radicals, ultraviolet irradiation, oxidized LDL, and bacterial or viral antigens. NF-κB plays a key role in regulating the immune response to infection. Incorrect regulation of NF-κB has been linked to cancer, inflammatory, and autoimmune diseases, septic shock, viral infection, and improper immune development. NF-κB has also been implicated in processes of synaptic plasticity and memory. There are five proteins in the mammalian NF-κB family: NF-κB1, NF-κB2, RelA, RelB, c-Rel.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-N6046
    Kamebakaurin Inhibitor 98.05%
    Kamebakaurin 是从 Rabdosia excisa 中提取的一种天然产物。Kamebakaurin 是 NF-κB 的抑制剂,可抑制 p50 的 DNA 结合活性。
    Kamebakaurin
  • HY-N2083
    Handelin Inhibitor 99.44%
    Handelin 是来自Chrysanthemum boreale 的愈创木酚内酯二聚体,它通过下调 NF-κB 信号传导和促炎性细胞因子的产生而具有强大的抗炎活性。
    Handelin
  • HY-N6009
    8-Deoxygartanin Inhibitor 99.24%
    8-Deoxygartanin 是山竹果中的一种 prenylated xanthones。8-Deoxygartanin 是一种丁基胆碱酯酶 (BChE) 的选择性抑制剂。8-Deoxygartanin 具有抗疟原虫活性,对 Plasmodium falciparum W2 植株作用的 IC50 值为 11.8 μM。8-Deoxygartanin 能抑制 NF-κB (p65) 的活化,IC50 值为 11.3 μM。
    8-Deoxygartanin
  • HY-N1196
    Suberosin Inhibitor 99.84%
    Suberosin 可从Plumbago zeylanica 分离得到,具有抗炎和抗血凝的活性。Suberosin 可通过调节NF-ATNF-κB,抑制PHA-诱导的 PBMC细胞增殖并捕获细胞周期G1过渡到 S期。
    Suberosin
  • HY-137976
    Penehyclidine hydrochloride

    盐酸戊乙奎醚

    Activator 99.2%
    Penehyclidine (Penequinine) hydrochloride 是一种抗胆碱能活性分子,选择性的 M1M3 受体拮抗剂。Penehyclidine hydrochloride 可激活肺组织中的 NF-kβ 并抑制炎症因子的释放。Penehyclidine hydrochloride 可减轻慢性阻塞性肺病 (COPD) 大鼠机械通气时的肺部炎症反应。
    Penehyclidine hydrochloride
  • HY-N9942
    Physalin A Inhibitor 99.22%
    Physalin A 是一种具有生物活性的醉茄内酯。Physalin A 在椎间盘退变模型中表现出抗炎、抗纤维化和改善自噬 (autophagy) 的作用。Physalin A 具有抗肿瘤活性,可诱导细胞凋亡 (apoptosis),ROS 产生和 G2/M 期细胞周期阻滞。此外。Physalin A 可显著提高醌还原酶活性,来提高解毒酶的表达。
    Physalin A
  • HY-148552
    Anti-inflammatory agent 35 Inhibitor 99.77%
    Anti-inflammatory agent 35 (化合物 5a27) 是一种口服有效的姜黄素类似物,具有抗炎活性。Anti-inflammatory agent 35 可阻断丝裂原活化蛋白激酶 (MAPK) 信号和 NF-kB 的核易位。Anti-inflammatory agent 35 还抑制黄中性粒细胞浸润和促炎细胞因子产生。Anti-inflammatory agent 35 在体内研究中显著减轻脂多糖 (LPS) 诱导的急性肺损伤 (ALI)。
    Anti-inflammatory agent 35
  • HY-N1380S1
    Guaiacol-d3

    愈创木酚-d3

    Inhibitor ≥99.0%
    Guaiacol-d3 是 Guaiacol 的氘代物。Guaiacol 是一种酚类化合物,抑制 LPS 刺激的 COX-2 表达和 NF-κB 激活,并具有抗炎活性。
    Guaiacol-d<sub>3</sub>
  • HY-N3387
    Licoricidin

    甘草西定

    Inhibitor ≥98.0%
    Licoricidin (LCD) 从甘草 Glycyrrhiza uralensis Fisch 中分离,具有抗癌活性。Licoricidin (LCD) 通过诱导周期停滞,诱导细胞凋亡 (apoptosis) 和自噬 (autophagy),可用于结直肠癌的研究。Licoricidin (LCD) 通过抑制肿瘤血管生成和淋巴管生成以及肿瘤组织局部微环境的变化抑制肺转移。Licoricidin (LCD) 通过体外和体内 AktNF-κB 途径的失活,增强吉西他滨诱导的骨肉瘤 (OS) 细胞的细胞毒性。Licoricidin (LCD) 通过 ROS 清除阻断 UVA 诱导的光老化,限制 MMP-1 的活性,被认为是新的局部应用的抗衰老制剂中的活性成分。
    Licoricidin
  • HY-N0705
    Curculigoside

    仙茅苷

    Inhibitor 99.82%
    Curculigoside 是 C. orchioide 中的主要皂苷,具有显着的抗氧化,抗骨质疏松,抗抑郁和神经保护作用。 通过调节 JAK/STAT/NF-κB 信号传导途径,在体内和体外表现出显着的抗关节炎作用。
    Curculigoside
  • HY-N1513
    Ganoderic acid H

    灵芝酸H

    Inhibitor 99.68%
    Ganoderic acid H 是一种从灵芝中提取的羊毛脂烷型三萜,能通过抑制转录因子AP-1 和 NF-kappaB 信号来抑制乳腺癌细胞细胞的生长和入侵。
    Ganoderic acid H
  • HY-N9451
    Ginger extract Inhibitor
    Ginger extract 在动物模型中具有抗癌、消炎和化疗作用。
    Ginger extract
  • HY-123936
    SR12343 Inhibitor ≥98.0%
    SR12343 是一种 IKK/NF-κB 抑制剂,是 NF-κB 必需调节因子 (NEMO) 结合区域 (NBD) 的模拟物。SR12343 通过阻断 IKKβ 与 NEMO 之间的相互作用来抑制 TNF-α 和 LPS 引起的 NF-κB 激活,其对 TNF-α 介导的 NF-κB 激活的 IC50 值为 37.02 μM。SR12343 抑制小鼠中 LPS 引起的急性肺部炎症。SR12343 可用于研究炎症和退行性疾病。
    SR12343
  • HY-N0906
    Ginsenoside Rk3

    人参皂甙 Rk3

    Inhibitor 98.85%
    Ginsenoside Rk3 存在于 Panax ginseng 的根中。在 HepG2 细胞中 Ginsenoside Rk3 抑制 TNF-α 诱导的 NF-κB 转录活性, IC50 值为 14.24±1.30 μM。
    Ginsenoside Rk3
  • HY-128423A
    Tylvalosin

    泰万菌素

    Inhibitor 99.00%
    Tylvalosin (Acetylisovaleryltylo?sin) 是一种具有口服活性的,广谱大环内酯抗生素 (antibiotic>),显示抗菌活性。Tylvalosin 是一种抗病毒试剂,可用于研究 PRRSV 感染。Tylvalosin 诱导细胞凋亡 (apoptosis)。Tylvalosin 还具有抗炎活性,缓解氧化应激,并通过抑制 NF-κB 激活来缓解急性肺损伤。
    Tylvalosin
  • HY-124651
    SEMBL Inhibitor 99.40%
    SEMBL 是一种有效的 NF-κB 抑制剂。SEMBL 能够抑制 NF-κB-DNA 结合,还抑制 NF-κB 依赖性炎性细胞因子分泌。SEMBL 通过降低 MMP 表达来抑制癌细胞的迁移和侵袭。可用于抗癌研究。
    SEMBL
  • HY-N1956
    Rubiadin-1-methyl ether Inhibitor 98.89%
    Rubiadin-1-methyl ether 是巴戟天中的蒽醌类化合物,可抑制破骨细胞性骨吸收,通过抑制 NF-κB p65 磷酸化水平,降解 IκBα 蛋白,以及降低 p65 的核转位起作用。
    Rubiadin-1-methyl ether
  • HY-N0492A
    α-Lipoic Acid sodium

    α-硫辛酸钠盐

    Inhibitor 99.92%
    α-Lipoic Acid (Thioctic acid) sodium 是一种抗氧化剂,是线粒体酶复合物的重要辅助因子。α-Lipoic Acid sodium 可抑制 NF-κB 依赖性的 HIV-1 LTR 活化。α-Lipoic Acid sodium 诱导内质网应激 (ERS) 介导的肝癌细胞凋亡 (apoptosis)。α-Lipoic Acid sodium 可与 CPUL1 (HY-151802) 合成自组装的纳米聚合体 CPUL1-LA NA,其抗肿瘤效果优于 CPUL1。
    α-Lipoic Acid sodium
  • HY-14928
    Lobeglitazone

    洛贝格列酮

    Inhibitor
    Lobeglitazone 是一种新型噻唑烷二酮。Lobeglitazone 是口服有效的 PPAR 的激动剂,对 PPARγPPARα 的 EC50 为 137.4 nM 和 546.3 nM。Lobeglitazone 是 ERK/JNK/Smad/NF-κB 信号通路的抑制剂。Lobeglitazone 具有抗炎、抗糖尿病、抗纤维化和抗动脉粥样硬化的活性。
    Lobeglitazone
  • HY-136477
    Pentagamavunon-1 Inhibitor 99.84%
    Pentagamavunon-1 (PGV-1) 是Curcumin 的类似物,具有口服活性,通过多个机制诱导凋亡信号,如抑制COX-2VEGF。Pentagamavunon-1 (PGV-1) 可抑制 NF-κB 的激活。
    Pentagamavunon-1
目录号 产品名 / 同用名 应用 反应物种

NF-κB transcription factors are critical regulators of immunity, stress responses, apoptosis and differentiation. In mammals, there are five members of the transcription factor NF-κB family: RELA (p65), RELB and c-REL, and the precursor proteins NF-κB1 (p105) and NF-κB2 (p100), which are processed into p50 and p52, respectively. NF-κB transcription factors bind as dimers to κB sites in promoters and enhancers of a variety of genes and induce or repress transcription. NF-κB activation occurs via two major signaling pathways: the canonical and the non-canonical NF-κB signaling pathways[1]

 

The canonical NF-κB pathway is triggered by signals from a large variety of immune receptors, such as TNFR, TLR, and IL-1R, which activate TAK1. TAK1 then activates IκB kinase (IKK) complex, composed of catalytic (IKKα and IKKβ) and regulatory (NEMO) subunits, via phosphorylation of IKKβ. Upon stimulation, the IKK complex, largely through IKKβ, phosphorylates members of the inhibitor of κB (IκB) family, such as IκBα and the IκB-like molecule p105, which sequester NF-κB members in the cytoplasm. IκBα associates with dimers of p50 and members of the REL family (RELA or c-REL), whereas p105 associates with p50 or REL (RELA or c-REL). Upon phosphorylation by IKK, IκBα and p105 are degradated in the proteasome, resulting in the nuclear translocation of canonical NF-κB family members, which bind to specific DNA elements, in the form of various dimeric complexes, including RELA-p50, c-REL-p50, and p50-p50. Atypical, IKK-independent pathways of NF-κB induction also provide mechanisms to integrate parallel signaling pathways to increase NF-κB activity, such as hypoxia, UV and genotoxic stress.

 

The non-canonical NF-κB pathway is induced by certain TNF superfamily members, such as CD40L, BAFF and lymphotoxin-β (LT-β), which stimulates the recruitment of TRAF2, TRAF3, cIAP1/2 to the receptor complex. Activated cIAP mediates K48 ubiquitylation and proteasomal degradation of TRAF3, resulting in stabilization and accumulation of the NFκB-inducing kinase (NIK). NIK phosphorylates and activates IKKα, which in turn phosphorylates p100, triggering p100 processing, and leading to the generation of p52 and the nuclear translocation of p52 and RELB[2][3].

 

Reference:

[1]. Oeckinghaus A, et al. The NF-kappaB family of transcription factors and its regulation.Cold Spring Harb Perspect Biol. 2009 Oct;1(4):a000034. 
[2]. Taniguchi K, et al. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018 May;18(5):309-324.
[3]. Perkins ND,et al. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.