1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-N3171A
    (+)-Nortrachelogenin Inhibitor 98.68%
    (+)-Nortrachelogenin (Wikstromol) 是来自 wikstroemia indica 的一个药理学配体,具有抗白血病的生物活性。
    (+)-Nortrachelogenin
  • HY-147899
    PI3K-IN-34 Inhibitor
    PI3K-IN-34 (Compound 6g) 是一种高选择性的 PI3K 抑制剂,PI3K-α,PI3K-β 和 PI3K-δ 的 IC50 值分别为 11.73, 6.09 和 11.18 μM。PI3K-IN-34 阻滞细胞周期于 G2/M 期并诱导细胞凋亡。PI3K-IN-34 可用于白血病研究。
    PI3K-IN-34
  • HY-N1904
    4′-Hydroxywogonin Inhibitor
    4′-Hydroxywogonin (8-Methoxyapigenin) 是一种黄酮类化合物,可以从 Scutellaria barbataVerbena littoralis 等多种植物中分离得到。4′-Hydroxywogonin 通过 TAK1/IKK/NF-κB、MAPKs 和 PI3/AKT 信号通路具有抗炎活性。4′-Hydroxywogonin 通过干扰 PI3K/AKT 信号抑制血管生成。4′-Hydroxywogonin 抑制细胞增殖和诱导细胞凋亡 (apoptosis)。
    4′-Hydroxywogonin
  • HY-P10320
    T3 Peptide Activator
    T3 Peptide 是 tumstatin 的活性片段。T3 Peptide 通过结合整合素 αvβ3vβ5,激活 PI3K/Akt/p70S6K 信号传导途径,从而刺激大鼠心脏成纤维细胞的增殖和迁移。
    T3 Peptide
  • HY-149521
    PI3K-IN-47 Inhibitor
    PI3K-IN-47 (Compound 27) 是一种二价 PI3K 抑制剂 (IC50: 对 PI3Kα 为 0.44 nM,对 PI3Kβ、PI3Kγ、PI3Kδ 为 7.18 nM、13.92 nM、22.83 nM。PI3K-IN-47 诱导细胞周期停滞在 G1 期,抑制集落形成和细胞迁移。PI3K-IN-47 抑制 HGC-27 异种移植小鼠的肿瘤生长。
    PI3K-IN-47
  • HY-P4790
    Acetyl-Exenatide Inhibitor
    Acetyl-Exenatide 是 Exenatide 的乙酰化衍生物。Exenatide 的功能类似胰岛素,可用于 2 型糖尿病的研究。Exenatide 可促进 Th17 分化,抑制 Treg 分化,下调 PI3K/Akt/FoxO1 磷酸化。
    Acetyl-Exenatide
  • HY-161852
    PI3K-IN-55 Inhibitor
    PI3K-IN-55 (Compound 6a) 是 PI3K 的潜在抑制剂。PI3K-IN-55 影响 PI3K/Akt/p53 信号通路,抑制癌细胞 A549、Hela、HepG2、MCF-7 和 HT-29 的增殖,IC50 为 1.03-6.78 μM。PI3K-IN-55 诱导细胞 MCF-7细胞凋亡 (apoptosis)。
    PI3K-IN-55
  • HY-146504
    Topoisomerase I/II inhibitor 3 Inhibitor
    Topoisomerase I/II inhibitor 3 (7) 是一种有效的拓扑异构酶 I (Topo I)II (Topo II) 双抑制剂。Topoisomerase I/II inhibitor 3 通过抑制 PI3K/Akt/mTOR 信号通路抑制细胞增殖、侵袭和迁移,诱导细胞凋亡(apoptosis)。Topoisomerase I/II inhibitor 3 可用于肝癌的研究。
    Topoisomerase I/II inhibitor 3
  • HY-144693
    MEK/PI3K-IN-2 Inhibitor
    MEK/PI3K-IN-2 (compound 6s) 是一种有效的 MEK/PI3K 抑制剂,其IC50 值分别为 352 nM (MEK1), 107 nM (PI3Kα), 和 137 nM (PI3Kδ)。MEK/PI3K-IN-2 抑制 pAKT 和 pERK1/2 水平。MEK/PI3K-IN-2 对肿瘤细胞具有抗增殖活性。
    MEK/PI3K-IN-2
  • HY-147614
    PI3K/mTOR Inhibitor-7 Inhibitor
    PI3K/mTOR Inhibitor-7 (Compound 19i) 是一种有效的 PI3K/mTOR 双重抑制剂。PI3K/mTOR Inhibitor-7 的效力比阳性对照 gedatolisib 高 4.7 倍(0.3 对 1.4 μM,IC50 值)。PI3K/mTOR Inhibitor-7 在 10 μM 时显着抑制 PI3K/Akt/mTOR 信号通路。PI3K/mTOR Inhibitor-7 具有研究癌症疾病的潜力。
    PI3K/mTOR Inhibitor-7
  • HY-155180
    FD2056 Inhibitor
    FD2056 是一种有效的具有口服活性的 PI3K 抑制剂。FD2056 抑制 PI3Kα/PI3Kβ/PI3Kγ/PI3KδIC50s 为 0.30、0.80、1.10、0.42 nM。FD2056 还抑制 CDK2-CyclinA2 和 CDK4-CyclinD3,IC50 分别为 115.95 和 2782.15 nM。FD2056 抑制乳腺癌细胞增殖,对于 MDA-MB-231、MDA-MB-468、MCF-7 细胞的 IC50 分别为 1.06、0.04、1.40 μM。FD2056 还可诱导癌症细胞凋亡 (apoptosis) 并抑制肿瘤生长。
    FD2056
  • HY-162848
    IHMT-PI3K-315 Inhibitor
    IHMT-PI3K-315 (20e) 是一种有效和选择性 PI3Kγ 抑制剂,对 PI3KγPI3KδIC50 值分别为 4.0 和9.1 nM。IHMT-PI3K-315 具有抗肿瘤活性。
    IHMT-PI3K-315
  • HY-158017
    WXM-1-170
    WXM-1-170 (compound 10) 是 Indisulam (HY-13650) 衍生物,可抑制胃癌细胞的迁移。WXM-1-170 减弱PI3K/AKT/GSK-3β/β-catenin 信号通路。
    WXM-1-170
  • HY-N0392R
    Polygalasaponin F (Standard)

    瓜子金皂苷己 (Standard)

    Inhibitor
    Polygalasaponin F (Standard) 是 Polygalasaponin F 的分析标准品。本产品用于研究及分析应用。Polygalasaponin F 是一种从 Polygala japonica 提取的齐墩果烷型三萜皂苷,可降低炎性细胞因子肿瘤坏死因子 α (TNFa) 的释放。 Polygalasaponin F 通过调节 TLR4-PI3K/AKT-NF-kB 信号通路减少神经炎症细胞因子的分泌。
    Polygalasaponin F (Standard)
  • HY-124348
    DM-PIT-1 Inhibitor
    DM-PIT-1 是一种 PIP3/PH 相互作用 (phosphatidylinositol-3,4,5-triphosphate/Pleckstrin) 抑制剂。DM-PIT-1 具有研究卵巢癌的潜力。
    DM-PIT-1
  • HY-N0728S2
    α-Linolenic acid-d14

    α-亚麻酸 d14

    Inhibitor
    α-Linolenic acid-d14 是 α-Linolenic acid 的氘代物。α-Linolenic acid 是从种子油中分离的,人体无法合成的必需脂肪酸。α-Linolenic acid 可通过调节 PI3K/Akt 信号传导来影响血栓形成过程。α-Linolenic acid 具有抗心律失常的特性,并且与心血管疾病和癌症等有关。
    α-Linolenic acid-d<sub>14</sub>
  • HY-161140
    PI3Kα-IN-16 Inhibitor
    PI3Kα-IN-16 (Z86) 是一种新型 PI3Kα 抑制剂,IC50 值为 4.28 μM。PI3Kα-IN-16 对 PI3K 介导的 CRC 生长和迁移具有有效的抑制效率。PI3Kα-IN-16 还会抑制 Wnt 信号通路。
    PI3Kα-IN-16
  • HY-111266
    Halenaquinone Inhibitor
    Halenaquinone 是一种 磷脂酰肌醇3-激酶 抑制剂,可从海洋海绵中分离得到。Halenaquinone 抑制 RANKL 诱导的破骨细胞生成,诱导 PC12 细胞凋亡。
    Halenaquinone
  • HY-156018
    PI3Kα-IN-13 Inhibitor
    PI3Kα-IN-13 (Compound 18a) 是一种 PI3Kα 抑制剂 (IC50: 2.5 nM)。PI3Kα-IN-13 诱导肿瘤细胞凋亡 (apoptosis)。PI3Kα-IN-13 抑制癌细胞增殖,IC50s 分别为 0.75 μM (MCF-7)、3.79 μM (HCT-116)、13.71 μM (MDA-MB) -231), 9.85 μM (SW620)。PI3Kα-IN-13 抑制肿瘤细胞集落形成、迁移和侵袭。
    PI3Kα-IN-13
  • HY-147912
    COX-2/PI3K-IN-2 Inhibitor
    COX-2/PI3K-IN-2 (compound 5f) 是一种有效的 PI3K 抑制剂,IC50 值为 2.78 nM,COX-2/PI3K-IN-2 是一种选择性 COX-2 抑制剂,Ki 值为 3.02 nM。COX-2/PI3K-IN-2 具有抗炎和抗癌特性。
    COX-2/PI3K-IN-2
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.