1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-144295
    PI3Kα-IN-5 Inhibitor
    PI3Kα-IN-5 (compound 6 ab) 是一种有效的 PI3Kα/mTOR 抑制剂,IC50 值分别为 0.7 nM 和 3.3 nM。PI3Kα-IN-5 可用于结直肠癌的研究。
    PI3Kα-IN-5
  • HY-158029
    PI3Kα-IN-21 Inhibitor
    PI3Kα-IN-21 (compound 8) 是 PI3Kα 抑制剂,对 PI3Kα 的选择性分别比 PI3Kβ/γ/δ 高出 10.41/16.99/37.53 倍 (IC50: 96.89/568.24/397.48 nM)。PI3Kα-IN-21 可抑制癌细胞活性、增殖和迁移,并通过 PI3K/Akt/mTOR 途径诱导线粒体凋亡。PI3Kα-IN-21 在非小细胞肺癌小鼠模型中表现出体内抗肿瘤效力。
    PI3Kα-IN-21
  • HY-146260
    NVP-CLR457 Inhibitor
    NVP-CLR457 (compound 40) 是一种口服有效的和平衡的泛 I 类 PI3K 抑制剂。NVP-CLR457 显示出明显的剂量依赖性 PK / PD / 疗效关系。NVP-CLR457 具有抗肿瘤活性。
    NVP-CLR457
  • HY-N0330R
    Momordin Ic (Standard)

    地肤子皂苷Ic (Standard)

    Modulator
    Momordin Ic (Standard) 是 Momordin Ic 的分析标准品。本产品用于研究及分析应用。Momordin Ic 是一种口服有效的可以从地肤子中分离得到的三萜皂苷,也是一种 SUMO 特异性蛋白酶 1 (SENP1) 抑制剂,SENP1/c-MYC 信号通路抑制剂,凋亡 (apoptosis) 诱导剂。Momordin Ic 通过活性氧介导的 PI3K/AktMAPK 信号通路诱导肝癌细胞自噬和凋亡。Momordin Ic 具有控制葡萄糖诱导的血糖升高,抑制胃排空,抗类风湿性关节炎,减少 CCl4 (HY-Y0298) 诱导的肝毒性作用和抗肿瘤活性。
    Momordin Ic (Standard)
  • HY-149427
    PI3Kα-IN-12 Inhibitor
    PI3Kα-IN-12 (compound 13) 是高选择性的 PI3Kα 抑制剂 (IC50: 1.2 nM)。PI3Kα-IN-12 抑制 HCT-116 和 U87-MG,IC50s 值分别为 0.83 和 1.25 μM。PI3Kα-IN-12 (40 mg/kg; IP) 可在 U87-MG 细胞系异种移植小鼠模型中导致肿瘤消退。
    PI3Kα-IN-12
  • HY-149235
    PI3Kδ-IN-12 Inhibitor
    PI3Kδ-IN-12 (化合物 13) 是一种 PI3Kδ 抑制剂 (pIC50 = 5.8),其对 PI3Kδ/γ/β/αpKi 值分别为 8.0/6.5/6.4/6.7。PI3Kδ-IN-12 可用于慢性呼吸系统疾病如哮喘和慢性阻塞性肺病 (COPD) 的研究。
    PI3Kδ-IN-12
  • HY-158147
    PI3Kδ-IN-20 Inhibitor
    PI3Kδ-IN-20 (compound (S)-36) 是 PI3Kδ 的有效抑制剂,IC50 为 6.4 nM。PI3Kδ-IN-20 在体外和体内均能显着抑制细胞增殖并显着诱导细胞凋亡 (apoptosis)。
    PI3Kδ-IN-20
  • HY-145338
    PI3Kβ-IN-1 Inhibitor
    PI3Kβ-IN-1 (化合物 (P)-14) 是一种选择性和具有口服活性的 PI3Kβ 抑制剂,IC50 值为 2 nM。
    PI3Kβ-IN-1
  • HY-139880
    PI3Kγ inhibitor 5 Inhibitor
    PI3Kγ inhibitor 5 是一种磷酸肌醇3-激酶γ(PI3Kγ)的抑制剂,其 IC50 值为 34 nM。
    PI3Kγ inhibitor 5
  • HY-157295
    PI3K/HDAC-IN-3 Inhibitor
    PI3K/HDAC-IN-3 (36) 是PI3KHDAC 的双抑制剂,其对PI3Kα和 HDAC1IC50 的值分别为0.23 nM 和 172 nM。PI3K/HDAC-IN-3 (36) 在MV4-11细胞中抑制AKT磷酸化和增加H3乙酰化。PI3K/HDAC-IN-3 (36) 在MV4-11异种移植物模型中显示出显著的剂量依赖性抗癌效果。
    PI3K/HDAC-IN-3
  • HY-147898
    PI3K-IN-33 Inhibitor
    PI3K-IN-33 (Compound 6e) 是一种高选择性的 PI3K 抑制剂,PI3K-α,PI3K-β 和 PI3K-δ 的 IC50 值分别为 11.73、6.09 和 11.18 μM。PI3K-IN-33 阻滞细胞周期于 G2/M 期并诱导细胞凋亡。PI3K-IN-33 可用于白血病研究。
    PI3K-IN-33
  • HY-121246S
    Fluorofenidone-d3
    Fluorofenidone-d3 是 Fluorofenidone 氘代物。Fluorofenidone (AKF-PD),AMR69 的类似物,具有同等的抗纤维化活性,但毒性低,半衰期长。Fluorofenidone (AKF-PD) 部分通过 PI3K/Akt 信号通路抑制 NADPH 氧化酶和细胞外基质 (ECM) 的沉积,从而减轻肾间质纤维化的发生。
    Fluorofenidone-d<sub>3</sub>
  • HY-161858
    EpskA21 Inhibitor
    EpskA21 是 PI3K/AKT 信号通路的抑制剂,能够抑制癌细胞 MCF-7、A549、MIA-PaCa-2、Panc-1 和 HepG2 的增殖,IC50 为 1.3-7.24 μM。EpskA21 能够抑制细胞迁移,在 G2/M (MCF-7) 期和 S (MIA-PaCa-2) 期阻滞细胞周期,并诱导 MCF-7 和 MIA-PaCa-2 细胞凋亡 (apoptosis)。EpskA21 能够导致线粒体功能障碍。
    EpskA21
  • HY-144686
    ATM Inhibitor-3 Inhibitor
    ATM Inhibitor -3 (化合物 34) 是一种强效的选择性 ATM 抑制剂,其 IC50 为 0.71 nM。ATM Inhibitor-3 对 PI3K 激酶家族有抑制作用。ATM Inhibitor-3 具有良好的代谢稳定性。
    ATM Inhibitor-3
  • HY-131055
    Mytoxin B Inhibitor
    Mytoxin B 是 ADC 细胞毒素 (ADC cytotoxin)。Mytoxin B 是一种大环内脂,其作用类似于 LY294002 (HY-10108)。Mytoxin B通过 PI3K/Akt 通路诱导细胞凋亡 (apoptosis)。
    Mytoxin B
  • HY-152238
    PI3K/mTOR Inhibitor-12 Inhibitor
    PI3K/mTOR Inhibitor-12 是一种口服有效的选择性 PI3K/mTOR 抑制剂,对 PI3KαmTORIC50 值分别为 0.06 nM 和 3.12 nM。PI3K/mTOR Inhibitor-12 具有抗肿瘤活性。PI3K/mTOR Inhibitor-12 具有较低的肝毒性。
    PI3K/mTOR Inhibitor-12
  • HY-157319
    PI3Kα-IN-15 Inhibitor
    PI3Kα-IN-15 是一种有效的 PI3Kα 抑制剂,IC50 为 0.15 μM。PI3Kα-IN-15 也具有良好的抗增殖活性(抑制SKOV-3、T47D、NCI-H1975、NCI-H460 和 MCF-7 的生长,IC50 值分别为 26.6 μM、7.9 μM、32.1 μM、17.7 μM 和9.4 μM。PI3Kα-IN-15可用于癌症研究。
    PI3Kα-IN-15
  • HY-142677
    PI3K-IN-27
    PI3K-IN-27 是一种有效的 PI3K 抑制剂。PI3K 属于脂质信号激酶大家族,在细胞生长、分化、迁移和细胞凋亡 apoptosis 等细胞过程中起关键作用。PI3K-IN-27 具有研究癌症和炎症等过度增殖性疾病或免疫和自身免疫性疾病的潜力 (信息摘自专利 WO2021233227A1,化合物 1)。
    PI3K-IN-27
  • HY-P0175A
    740 Y-P TFA Activator
    740 Y-P TFA (740YPDGFR; PDGFR 740Y-P) 是一个有效的,具有细胞渗透性的 PI3K 激活剂。740 Y-P TFA 很容易结合含有 p85 的 N- 和 C- 末端 SH2 结构域的 GST 融合蛋白,但不能单独结合 GST。
    740 Y-P TFA
  • HY-152774
    Antitumor agent-86 Inhibitor
    Antitumor agent-86 (compound 5a) 抑制 MCF-7 乳腺癌细胞的 IC50 值为 2.62 µM。Antitumor agent-86 诱导细胞凋亡和细胞周期阻滞,并通过靶向 RAS/PI3K/Akt/JNK 信号级联显示抗肿瘤活性。
    Antitumor agent-86
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.