1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-P0175A
    740 Y-P TFA Activator
    740 Y-P TFA (740YPDGFR; PDGFR 740Y-P) 是一个有效的,具有细胞渗透性的 PI3K 激活剂。740 Y-P TFA 很容易结合含有 p85 的 N- 和 C- 末端 SH2 结构域的 GST 融合蛋白,但不能单独结合 GST。
    740 Y-P TFA
  • HY-152774
    Antitumor agent-86 Inhibitor
    Antitumor agent-86 (compound 5a) 抑制 MCF-7 乳腺癌细胞的 IC50 值为 2.62 µM。Antitumor agent-86 诱导细胞凋亡和细胞周期阻滞,并通过靶向 RAS/PI3K/Akt/JNK 信号级联显示抗肿瘤活性。
    Antitumor agent-86
  • HY-163151
    JE-133 Inhibitor
    JE-133 是一种具有光学活性的等色体-2H-铬偶联物。JE-133 具有抗氧化和抗炎活性。JE-133 是一种神经保护剂,可有效抑制与 PI3K/AktMAPK 信号通路相关的神经元氧化损伤。JE-133 也可以通过调控 JAK/STATNrf2 信号通路来抑制脂多糖 (LPS) (HY-D1056) 诱导的神经炎症。
    JE-133
  • HY-109029
    Dezapelisib Inhibitor
    Dezapelisib (NCB040093) 是一种有效的磷脂酰肌醇 3-激酶 δ (PI3Kδ) 抑制剂。Dezapelisib 是一种很有前景的研究策略,可用于研究特定的 R/R B 细胞淋巴瘤。
    Dezapelisib
  • HY-48869
    PI3K-IN-46 ≥98.0%
    PI3K-IN-46 (Intermediate 4) 是合成 PI3K 抑制剂 (2-亚氨基唑啉酮乙烯基稠苯衍生物) 的中间体,这类衍生物可用于自身免疫性疾病、心血管疾病和神经退行性疾病的研究。
    PI3K-IN-46
  • HY-N0103R
    Sophocarpine (Standard)

    槐果碱 (Standard)

    Inhibitor
    Sophocarpine (Standard) 是 Sophocarpine 的分析标准品。本产品用于研究及分析应用。Sophocarpine 是从传统草药苦参 (Sophora flavescens) 中提取的重要生物碱之一,苦参具有抗病毒,抗肿瘤,抗炎等多种药理作用。Sophocarpine 通过多种机制显着抑制胃癌细胞的生长,例如诱导自噬 (autophagy),激活细胞凋亡 (apoptosis) 和下调细胞存活 PI3K/AKT 信号通路。Sophocarpine 已被证明在各种癌细胞中具有抗肿瘤活性,包括肝细胞癌,前列腺癌和结肠直肠癌。
    Sophocarpine (Standard)
  • HY-132898
    PI3K-IN-23 Activator
    PI3K-IN-23 是一种 (E)-9-oxooctadec-10-en-12-ynoic acid 类似物,可促进葡萄糖摄取,EC50 值为 7.00 μM。
    PI3K-IN-23
  • HY-N0716R
    Berberine (Standard)

    黄连素 (Standard)

    Activator
    Berberine (Standard)是 Berberine 的分析标准品。本产品用于研究及分析应用。Berberine (Natural Yellow 18) 是从中草药黄连中分离出来的一种生物碱,常用作抗生素。Berberine (Natural Yellow 18) 诱导活性氧 (ROS) 生成并抑制 DNA 拓扑异构酶 (topoisomerase)。Berberine (Natural Yellow 18) 具有抗肿瘤特性。硫酸盐形式 (HY-N0716B) 可提高
    Berberine (Standard)
  • HY-N1435R
    Oroxin B (Standard)

    木蝴蝶苷B (Standard)

    Inhibitor
    Oroxin B (Standard) 是 Oroxin B 的分析标准品。本产品用于研究及分析应用。Oroxin B (OB) 是一种从传统中草药 Oroxylum indicum (Linn.) Bentham ex Kurz 中分离出来的黄酮类化合物。 Oroxin B (OB) 通过上调 PTEN,下调 COX-2VEGFPI3K 和 p-AKT,对肝癌细胞具有明显的抑制作用,诱导细胞早期凋亡 (apoptosis)。Oroxin B (OB) 在恶性淋巴瘤细胞中诱导肿瘤抑制性 ER 应激。
    Oroxin B (Standard)
  • HY-169983
    PI3Kδ-IN-23 Inhibitor
    PI3Kδ-IN-23 (compound A11) 是 PI3Kδ 的有效抑制剂,其 IC50 为 0.27 nM。PI3Kδ-IN-23 通过与 Lys779 的共价键相互作用与 PI3Kδ 结合。PI3Kδ-IN-23 在癌症研究中发挥着重要作用。
    PI3Kδ-IN-23
  • HY-149205
    CXJ-2 Inhibitor
    CXJ-2 是一种环状肽,对弹性蛋白衍生肽 (EDP) 表现出中等亲和力。 CXJ-2 表现出抑制 PI3K/ERK 通路并减少肝星状细胞增殖和迁移的有效活性。 CXJ-2 具有强大的抗纤维化作用。
    CXJ-2
  • HY-144450
    PI3K-IN-29 Inhibitor
    PI3K-IN-29 是一种有效的 PI3K 抑制剂。PI3K-IN-29 对 U87MG、HeLa 和 HL60 细胞具有较好的抑制作用,IC50 值分别为 0.264、2.04 和 1.14 µM。PI3K-IN-29 通过抑制 PI3K 催化的 Akt 的磷酸化来抑制 PI3K/Akt 通路。
    PI3K-IN-29
  • HY-160418
    PI3K-IN-51 Inhibitor
    PI3K-IN-51 是一种 PI3K 抑制剂,对于 p120γ 和 p110δ/p85α 的 IC50 值 < 500 nM (WO2016204429A1; Example 10)。
    PI3K-IN-51
  • HY-N2515R
    Ginsenoside Rk1 (Standard)

    人参皂苷 (Standard)

    Inhibitor
    Ginsenoside Rk1 (Standard) 是 Ginsenoside Rk1 的分析标准品。本产品用于研究及分析应用。Ginsenoside Rk1 人参皂苷 Rk1 是人参的高温加工提取物。 Ginsenoside Rk1 具有抗炎作用,抑制 Jak2/Stat3 信号通路和 NF-κB 的激活。 Ginsenoside Rk1 具有抗肿瘤作用,抗血小板聚集活性,抗炎作用,抗胰岛素抵抗,肾保护作用,抗菌作用,认知功能增强,脂质积聚减少和预防骨质疏松症。 Ginsenoside Rk1 通过触发细胞内活性氧 (ROS) 生成和阻断 PI3K/Akt 途径诱导细胞凋亡。
    Ginsenoside Rk1 (Standard)
  • HY-W040417
    Boc-L-cyclobutylglycine 98.91%
    Boc-L-cyclobutylglycine 是一种可以用于 PI3K 抑制剂合成的甘氨酸衍生物。
    Boc-L-cyclobutylglycine
  • HY-155890
    Fimepinostat mesylate Inhibitor
    Fimepinostat mesylate 有效抑制 I 型 PI3K 及 I 和 II 型 HDAC 酶,作用于 PI3Kα/PI3Kβ/PI3KδHDAC1/HDAC2/HDAC3/HDAC10IC50 分别为 19/54/39 nM 和 1.7/5.0/1.8/2.8 nM。
    Fimepinostat mesylate
  • HY-168718
    FAK-IN-22 Inhibitor
    FAK-IN-22 (Compound 26) 是 FAKJAK3Aurora B 的抑制剂,其 IC50 值分别为 50.94 nM,9.99 nM 和 0.49 nM,有效抑制胰腺导管腺癌 (PDAC) 的肿瘤发生和转移。FAK-IN-22 有效抑制 PANC-1 细胞的增殖,其 IC50 值为 0.15 μM。FAK-IN-22 通过抑制 FAK/PI3K/Akt 信号通路,在 PANC-1 细胞中诱导凋亡和 G2/M 期阻滞。
    FAK-IN-22
  • HY-150034
    PI3K-IN-38 Inhibitor
    PI3K-IN-38 (化合物 123) 是一种口服有效的 PI3K 抑制剂,其 IC50 值为 0.541 µM (PI3K-α)。PI3K-IN-38 具有抗癌和抗炎的活性,可以抑制体内肿瘤的生长。
    PI3K-IN-38
  • HY-10116
    PI-540 Inhibitor
    PI-540 是双环噻吩并嘧啶衍生物,是口服有效的 PI3K 抑制剂。PI-540 具有抗癌细胞增殖和高组织分布度的特性。PI-540 可抑制 PI3K 不同亚型,IC50s 分别为 10 nM (P110α),3510 nM (P110β),410 nM (P110δ),33110 nM (P110γ)。PI-540 还抑制 mTOR (IC50: 61 nM) 和 DNA-PK (IC50: 525 nM)。
    PI-540
  • HY-102082
    Adenosine N1-oxide Inhibitor
    Adenosine N1-oxide 是一种具有口服活性的抗炎剂,可从蜂王浆中分离得到。Adenosine N1-oxide 促进成骨和成脂分化。
    Adenosine N1-oxide
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.