1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-169121
    DA-143 Inhibitor
    DA-143 是一种选择性 DNA-PKcs 抑制剂 (IC50: 2.5 nM),对 mTOR、PI3KΔ 和 ATM 的 IC50 分别为 280 nM、106 nM 和 6,594 nM。DA-143 可阻断 DNA-PKcs 底物的磷酸化。DA-143 可增强癌细胞对阿霉素 (HY-15142) 的敏感性。
    DA-143
  • HY-146789
    PI3Kδ/γ-IN-2 Inhibitor
    PI3Kδ/γ-IN-2 是一种有效的 PI3KδPI3Kγ 双重抑制剂,IC50 分别为 1 nM 和 4.3 nM。PI3Kδ/γ-IN-2 具有良好的口服生物利用度。PI3Kδ/γ-IN-2 具有抗 B 细胞恶性肿瘤的潜力。
    PI3Kδ/γ-IN-2
  • HY-162023
    mTOR inhibitor-10 Inhibitor
    mTOR inhibitor-10 (Compound 9c) 是 mTOR 的选择性抑制剂。mTOR inhibitor-10 抑制 mTORPI3K-αIC50分别为 0.7 和 825 nM。mTOR inhibitor-10 抑制 LNCaP 增殖,IC50为 87 nM。
    mTOR inhibitor-10
  • HY-N0022R
    Isoacteoside (Standard)

    异麦角甾苷 (Standard)

    Inhibitor
    Isoacteoside (Standard) 是 Isoacteoside 的分析标准品。本产品用于研究及分析应用。Isoacteoside是天然产物,能显著地抑制糖基化终产物的形成。Isoacteoside standard 调节 AKT/PI3K/m-TOR/NF-κB 信号通路,诱导 OVCAR-3 细胞凋亡 (apoptosis)。Isoacteoside standard 具有抗肿瘤、抗炎、抗肥胖和神经保护作用[sup>[2]
    Isoacteoside (Standard)
  • HY-120265
    MIPS-9922 Inhibitor
    MIPS-9922 是一种强效且选择性的 PI3Kβ 抑制剂,IC50 为 63 nM。MIPS-9922 抑制 PI3Kβ 的效力比 PI3Kδ 高 30 倍以上。MIPS-9922 阻断 PI3K 介导的血小板糖蛋白 αIIbβ3 活化和血小板粘附。MIPS-9922 具有抗血小板和抗血栓活性。
    MIPS-9922
  • HY-N13176
    Stellettin B Inhibitor
    Stellettin B 是一种可以从海洋海绵 Jaspis stellifera 中分离得到的三萜化合物。Stellettin B 可以通过阻断 PI3K/Akt/mTOR 通路诱导人非小细胞肺癌 A549 细胞 G1 期阻滞、凋亡 (apoptosis) 和自噬 (autophagy)。Stellettin B 可以通过减少 MAPKFAK/PI3K/AKT/mTOR 信号通路的激活来减少肝癌细胞的迁移和侵袭。Stellettin B 可用于多种肿瘤的研究。
    Stellettin B
  • HY-116563
    PI3Kα-IN-24 Inhibitor
    PI3Kα-IN-24 (WR23) 是一种 PI3Kα 抑制剂,其 IC50 值为 0.025 μM,并表现出显著抑制 pAktSer473 的效果。PI3Kα-IN-24 可用于癌症研究。
    PI3Kα-IN-24
  • HY-113572
    PX-866-17OH Inhibitor
    PX-866-17OH 是 PX-866 (Sonolisib, HY-N6775) 的代谢产物,是 PI3K 的泛亚型抑制剂,对 PI3Kα、PI3Kβ、PI3Kɣ 和 PI3KδIC50 分别为14、57、131和148 nM。
    PX-866-17OH
  • HY-160458
    PI3Kα-IN-17 Inhibitor
    PI3Kα-IN-17 (example 4) 是 PI3Kα 的有效抑制剂。
    PI3Kα-IN-17
  • HY-N7109B
    Erucic acid sodium Activator
    Erucic acid sodium 是一种单不饱和脂肪酸 (MUFA),从萝卜的种子中分离出来的。Erucic acid sodium 很容易地穿过血脑屏障 (BBB),它可以使大脑中长链脂肪酸的积累正常化。Erucic acid sodium 可以改善认知障碍并有效预防痴呆。
    Erucic acid sodium
  • HY-158652
    (R)-CCG-1423 Inhibitor
    (R)-CCG-1423 是 RhoA 的抑制剂。 (R)-CCG-1423 可抑制 Rho 的下游并对 SRE 具有特异性。
    (R)-CCG-1423
  • HY-15346R
    Copanlisib (Standard)

    库潘尼西(Standard)

    Inhibitor
    Copanlisib (Standard)是 Copanlisib 的分析标准品。本产品用于研究及分析应用。Copanlisib (BAY 80-6946) 是一种有效的,选择性的和 ATP 竞争性的泛 I 类 PI3K 抑制剂,对 PI3KαPI3KδPI3KβPI3KγIC50 分别为 0.5 nM、0.7 nM、3.7 nM 和 6.4 nM。除 mTOR 外,Copanlisib 对其他脂质和蛋白激酶的选择性超过 2000 倍。Copanlisib 具有优异的抗肿瘤活性。
    Copanlisib (Standard)
  • HY-N13164
    Polygalacin D3

    远志皂苷D3

    Inhibitor
    Polygalacin D3 是一种可以从桔梗中分离得到的三萜皂苷化合物。Polygalacin D3 可以通过阻断 PI3K/Akt 通路来抑制非小细胞肺癌 (NSCLC) 细胞系的增殖,并诱导细胞周期停滞和细胞凋亡 (apoptosis)。
    Polygalacin D3
  • HY-157706
    PI(3,4)P2 (18:1) (ammonium salt) Activator
    PI(3,4)P2 (18:1) ammonium salt 是一种磷脂酰肌醇 3 激酶 (PI3K) 激活剂。PI(3,4)P2 (18:1) ammonium salt 是一种多磷酸化的磷脂酰肌醇,通过激活 PI3K 来促进 AKT (蛋白激酶B) 的活化,进而影响细胞的代谢、生长和存活。PI(3,4)P2 (18:1) ammonium salt 还参与调节细胞骨架的动态变化,影响细胞形态和运动。PI(3,4)P2 (18:1) ammonium salt 可用于癌症,糖尿病和心血管疾病发生发展的研究。
    PI(3,4)P2 (18:1) (ammonium salt)
  • HY-W636234
    GSK2636771 methyl Inhibitor
    GSK2636771 methyl (compound II) 是 PI3Kβ 的抑制剂。GSK2636771 methyl 可与 VT-464 (HY-15996) 联合用于癌症研究。
    GSK2636771 methyl
  • HY-155211
    mTOR inhibitor-13 Inhibitor
    mTOR inhibitor-13(化合物 9g)是一种芳基脲基化合物,是一种有效的选择性 mTOR 抑制剂,IC50 为 0.29 nM。mTOR inhibitor-13 还抑制 PI3K-αIC50 为 119 nM。
    mTOR inhibitor-13
  • HY-10549
    PI3Kγ inhibitor 1 Inhibitor
    PI3Kγ inhibitor 1 是一种 PI3KδPI3Kγ 抑制剂,详细信息请参考专利文献 WO2014004470A1 中 Table 4 中的化合物 168。PI3Kγ inhibitor 1 抑制 PI3KδPI3KγIC50<100 nM。
    PI3Kγ inhibitor 1
  • HY-164384
    DFX117 Inhibitor
    DFX117 是口服有效的 PI3Kα 和 c-Met 酪氨酸激酶 (c-Met) 选择性抑制剂。DFX117 抑制 PI3K/Akt/mTOR 通路,抑制 NCI-H1975、NCI-H1993 和 HCC827 的增殖,IC50 为 0.02-0.08 µM。DFX117 在 G0/G1 期阻滞细胞周期,诱导 A549 和 NCI-H1975 细胞凋亡 (apoptosis)。DFX117 在小鼠中表现出抗肿瘤活性。i
    DFX117
  • HY-162024
    mTOR inhibitor-16 Inhibitor
    mTOR inhibitor-16 (Compound 9f) 是 mTOR 的选择性抑制剂。mTOR inhibitor-10 抑制 mTORPI3K-αIC50 分别为 1.25 和 82 nM。mTOR inhibitor-10 抑制 LNCaP 细胞增殖,IC50 为 140 nM。
    mTOR inhibitor-16
  • HY-150309
    PI3K-IN-54 Inhibitor
    PI3K-IN-54 (compound 10w) 是一种泛 PI3K 抑制剂。PI3K-IN-54 对 p110αp110βp110δIC50 值分别为 0.22 nM、1.4 nM 和 0.38 nM。PI3K-IN-54 可用于癌症研究。
    PI3K-IN-54
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.