1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-10108A
    LY294002 hydrochloride Inhibitor 99.47%
    LY294002 hydrochloride 是一种有效的广谱 PI3K 抑制剂,对 P110α, P110δP110βIC50 分别为 0.5, 0.57 和 0.97 μM。 IC50值分别为P110α、P110δ和P110β的0.5、0.57和0.97 μM。LY294002 hydrochloride 也能抑制 CK2 ,其 IC50 为 98 nM。LY294002 hydrochloride 可用于胰腺癌研究。
    LY294002 hydrochloride
  • HY-100470
    NSC781406 Inhibitor 99.97%
    NSC781406是高效的 PI3KmTOR 抑制剂,对PI3Kα的 IC50 值为2 nM。
    NSC781406
  • HY-17635A
    Leniolisib phosphate Inhibitor 99.10%
    Leniolisib (CDZ173) phosphate 是高效,选择性的 PI3Kδ 抑制剂。Leniolisib phosphate 有潜力用于免疫缺陷类疾病的研究。
    Leniolisib phosphate
  • HY-15868
    HS-173 Inhibitor 99.04%
    HS-173 是一种新颖的 PI3K 抑制剂,常用于癌症研究。
    HS-173
  • HY-112897
    IITZ-01 Inhibitor 98.18%
    IITZ-01 是一个具有抗肿瘤活性的、有效的亲溶酶体的自噬抑制剂,其对 PI3KγIC50 值为 2.62 μM。
    IITZ-01
  • HY-107364
    MTX-211 Inhibitor 99.81%
    MTX-211 (Mol 211) 是 EGFRPI3K 的双重抑制剂,IC50 值 <100 nM。MTX-211 可用于癌症和其他疾病的研究。
    MTX-211
  • HY-115870
    AZD8154 Inhibitor 99.88%
    AZD8154 是一种新型吸入的选择性 PI3Kγδ 双抑制剂,靶向气道炎症性疾病。
    AZD8154
  • HY-12644
    Acalisib Inhibitor 99.98%
    Acalisib 是一种有效的选择性 PI3Kδ 抑制剂,IC50 为 12.7 nM。
    Acalisib
  • HY-100398
    PF-04979064 Inhibitor 99.54%
    PF-04979064 是一种有效的选择性 PI3K/mTOR 双重激酶抑制剂,抑制 PI3KαmTORKi 分别为 0.13 nM 和 1.42 nM。
    PF-04979064
  • HY-115620
    AQX-016A Inhibitor 98.00%
    AQX-016A 是一种口服有效的 SHIP1 激动剂。AQX-016A 可以在体外激活重组 SHIP1 酶并刺激 SHIP1 活性。AQX-016A 还可抑制 PI3K 通路和 TNFa 的产生,可用于各种炎症疾病的研究。
    AQX-016A
  • HY-107834
    PIK-75 Inhibitor 99.94%
    PIK-75 是一种可逆的 DNA-PKp110α-选择性的抑制剂,抑制 DNA-PK,p110α 和 p110γ,IC50 分别为 2,5.8 和 76 nM。PIK-75 抑制 p110α 效果比抑制 p110β (IC50=1.3 μM) 高 200 多倍。PIK-75 诱导凋亡 (apoptosis)。
    PIK-75
  • HY-100603
    GSK-F1 Inhibitor
    GSK-F1 (Compound F1) 是一种具有口服活性的 PI4KA 抑制剂,对PI4KA、PI4KB、PI3KA、PI3KB、PI3KG 和 PI3KD 的 pIC50 分别为 8.0、5.9、5.8、5.9、5.9 和 6.4。GSK-F1 可用于 HCV 感染的研究。
    GSK-F1
  • HY-12869
    AZD-8835 Inhibitor 98.62%
    AZD8835 是一种有效的选择性 PI3KαPI3Kδ 抑制剂,IC50 分别为 6.2 和 5.7 nM。
    AZD-8835
  • HY-111508
    PI3K/mTOR Inhibitor-2 Inhibitor 99.10%
    PI3K/mTOR Inhibitor-2 是一种有效的双重 pan-PI3K/mTOR 抑制剂,抑制 PI3Kα/PI3Kβ/PI3Kδ/PI3KγIC50 值为 3.4/34/16/1 nM,mTORIC50 值为 4.7 nM。抗肿瘤活性。
    PI3K/mTOR Inhibitor-2
  • HY-153894
    SRX3177 Inhibitor 99.59%
    SRX3177 是 CDK4/6PI3KBRD4 的三重抑制剂,IC50 分别为 33 nM (BRD4 BD1)、89 nM (BRD4 BD2)、79 nM (PI3Kα)、83 nM (PI3Kδ)、3.18 μM (PI3Kγ)、<2.5 nM (CDK4)、3.3 nM (CDK6)。SRX3177 对癌细胞具有广泛的细胞毒活性,但对正常上皮细胞友好。
    SRX3177
  • HY-110109
    ETP-45658 Inhibitor 98.97%
    ETP-45658 是一种有效的 PI3K 抑制剂,抑制 PI3KαPI3KδPI3KβPI3KγIC50 值分别为 22.0 nM,39.8 nM,129.0 nM 和 717.3 nM。ETP-45658 还可以抑制 DNA-PK (IC50=70.6 nM) 和 mTOR (IC50=152.0 nM)。ETP-45658 可用于癌症研究。
    ETP-45658
  • HY-N6950
    Hederacolchiside A1

    革叶常春藤皂苷 A1

    Modulator 99.69%
    Hederacolchiside A1 是从白头翁中分离的,通过调节 PI3K/Akt/mTOR 信号通路诱导凋亡,从而抑制肿瘤细胞的增殖。Hederacolchiside A1 具有抗血吸虫病活性,影响体内和体外的寄生虫生存力。
    Hederacolchiside A1
  • HY-N0392
    Polygalasaponin F

    瓜子金皂苷己

    Inhibitor 99.85%
    Polygalasaponin F 是一种从 Polygala japonica 提取的齐墩果烷型三萜皂苷,可降低炎性细胞因子肿瘤坏死因子 α (TNFa) 的释放。 Polygalasaponin F 通过调节 TLR4-PI3K/AKT-NF-kB 信号通路减少神经炎症细胞因子的分泌。
    Polygalasaponin F
  • HY-11042
    GNE-477 Inhibitor 98.75%
    GNE-477 是一种高效的双重 PI3K (IC50=4 nM)/mTOR (Ki=21 nM) 抑制剂。
    GNE-477
  • HY-16754
    Seletalisib Inhibitor 98.88%
    Seletalisib (UCB5857)是有效选择性的PI3Kδ抑制剂,IC50值为12 nM。
    Seletalisib
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.