1. Academic Validation
  2. Antagonism by acetyl-RYYRIK-NH2 of G protein activation in rat brain preparations and of chronotropic effect on rat cardiomyocytes evoked by nociceptin/orphanin FQ

Antagonism by acetyl-RYYRIK-NH2 of G protein activation in rat brain preparations and of chronotropic effect on rat cardiomyocytes evoked by nociceptin/orphanin FQ

  • Br J Pharmacol. 1999 Feb;126(3):555-8. doi: 10.1038/sj.bjp.0702353.
H Berger 1 E Albrecht G Wallukat M Bienert
Affiliations

Affiliation

  • 1 Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany. berger@tmp-berlin.de
Abstract

For the further elucidation of the central functions of nociceptin/orphanin FQ (noc/OFQ), the endogenous ligand of the G protein-coupled opioid receptor-like receptor ORL1, centrally acting specific antagonists will be most helpful. In this study it was found that the hexapeptide acetyl-RYYRIK-NH2 (Ac-RYYRIK-NH2), described in literature as partial agonist on ORL1 transfected in CHO cells, antagonizes the stimulation of [35S]-GTPgammaS binding to G proteins by noc/OFQ in membranes and sections of rat brain. The antagonism of the peptide was competitive, of high affinity (Schild constant 6.58 nM), and specific for noc/OFQ in that the stimulation of GTP binding by agonists for the mu-, delta-, and kappa-opioid receptor was not inhibited. The hexapeptide also fully inhibited the chronotropic effect of noc/OFQ on neonatal rat cardiomyocytes. It is suggested that Ac-RYYRIK-NH2 may provide a promising starting point for in vivo tests for antagonism of the action of noc/OFQ and for the further development of highly active and specific antagonists.

Figures
Products