1. Academic Validation
  2. Deuterium isotope effects and product studies for the oxidation of N(omega)-allyl-L-arginine and N(omega)-allyl-N(omega)-hydroxy-L-arginine by neuronal nitric oxide synthase

Deuterium isotope effects and product studies for the oxidation of N(omega)-allyl-L-arginine and N(omega)-allyl-N(omega)-hydroxy-L-arginine by neuronal nitric oxide synthase

  • Bioorg Med Chem. 2000 Aug;8(8):1931-6. doi: 10.1016/s0968-0896(00)00154-1.
J M Hah 1 L J Roman R B Silverman
Affiliations

Affiliation

  • 1 Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA.
Abstract

The nitric oxide synthases (NOS), which require heme, tetrahydrobiopterin, FMN, FAD, and NADPH, catalyze the O2-dependent conversion of L-arginine to L-citrulline and nitric oxide. N(omega)-Allyl-L-arginine, a mechanism-based inactivator of neuronal NOS, also is a substrate, producing L-arginine, acrolein, and H2O (Zhang, H. Q.; Dixon, R. P., Marletta, M. A.; Nikolic, D.; Van Breemen, R.; Silverman, R. B. J. Am. Chem. Soc. 1997, 119, 10888). Two possible mechanisms for this turnover are proposed, one initiated by allyl C-H bond cleavage and the Other by guanidino N H cleavage, and these mechanisms are investigated with the use of N(omega)-allyl-L-arginine (1), N(omega)-[1,1-(2)H2]allyl-L-arginine (7), N(omega)-allyl-N(omega)-hydroxy-L-arginine (2) and N(omega)-[1,1-(2)H2]allyl-N(omega)-hydroxy-L-arginine (8) as substrates. Significant isotope effects on the two kinetic parameters, kcat and kcat/Km, are observed in case of 1 and 7 during turnover, but not with 2 and 8. No kinetic isotope effects are observed for either compound in their role as inactivators. These results support a mechanism involving initial C-H bond cleavage of N(omega)-allyl-L-arginine followed by hydroxylation and breakdown to products.

Figures
Products