1. Academic Validation
  2. Validation of in vivo pharmacodynamic activity of a novel PDGF receptor tyrosine kinase inhibitor using immunohistochemistry and quantitative image analysis

Validation of in vivo pharmacodynamic activity of a novel PDGF receptor tyrosine kinase inhibitor using immunohistochemistry and quantitative image analysis

  • Mol Cancer Ther. 2005 Aug;4(8):1198-204. doi: 10.1158/1535-7163.MCT-05-0004.
Michael R D'Andrea 1 Jay M Mei Robert W Tuman Robert A Galemmo Dana L Johnson
Affiliations

Affiliation

  • 1 Drug Discovery, D404, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., P.O. Box 776, Welsh and McKean Roads, Spring House, PA 19477-0776, USA. mdandrea@prdus.jnj.com
Abstract

With the advent of agents directed against specific molecular targets in drug discovery, it has become imperative to show a compound's cellular impact on the intended biomolecule in vivo. The objective of the present study was to determine if we could develop an assay to validate the in vivo effects of a compound. Hence, we investigated the in vivo pharmacodynamic activity of JNJ-10198409, a relatively selective inhibitor of platelet-derived growth factor receptor tyrosine kinase (PDGF-RTK), in tumor tissues after administering the compound orally in a nude mouse xenograft model of human LoVo colon Cancer. We developed a novel assay to quantify the in vivo anti-PDGF-RTK activity of the inhibitor in tumor tissue by determining the phosphorylation status of Phospholipase Cgamma1 (PLCgamma1), a key downstream cellular molecule in the PDGF-RTK signaling cascade. We used two Antibodies, one specific for the total (phosphorylated and unphosphorylated forms) PLCgamma1 (pan-PLCgamma1) and the other, specific for phosphorylated form of PLCgamma1 (ph-PLCgamma1) to immunohistochemically detect their expression in tumor tissues. Computer-assisted image analysis was then used to directly compare the ratio of ph-PLCgamma1 to pan-PLCgamma1 immunolabeling intensities in serial sections (5 mum) of tumors obtained from vehicle- and JNJ-10198409-treated tumor-bearing mice. Our data showed statistically significant, dose-dependent differences in the ph-PLC/pan-PLC ratio among the four treatment groups (vehicle, 25, 50, and 100 mg/kg b.i.d.). These results confirmed this compound's ability to suppress PDGF-RTK downstream signaling in tumor tissues in vivo. In addition to this specific application of this in vivo validation approach to those targets that use PLCgamma as a downstream signaling partner, these methods may also benefit other drug discovery targets.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-W011266
    99.57%, PDGFR 抑制剂