1. Academic Validation
  2. The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea

The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea

  • J Biol Chem. 2013 Jul 12;288(28):20404-15. doi: 10.1074/jbc.M113.467860.
Irshad Ali Sheikh 1 Hemanta Koley Manoj K Chakrabarti Kazi Mirajul Hoque
Affiliations

Affiliation

  • 1 Division of Molecular Pathophysiology, National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India.
Abstract

The apical membrane of intestinal epithelia expresses intermediate conductance K(+) channel (KCNN4), which provides the driving force for Cl(-) secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl(-) secretion via stimulation of Rap2-phospholipase Cε-[CA(2+)]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl(-) secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl(-) secretion and apical K(+) conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2'-O- methyladenosine 3',5'-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K(+) channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK Inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.

Keywords

Chloride Channels; Chloride Transport; Cholera Toxin; Cl- Secretion; Cyclic AMP (cAMP); Diarrhea; Epac1; KCNN4c; Potassium Transport; Rap1a.

Figures
Products