1. Academic Validation
  2. Solar Light Induced Photon-Assisted Synthesis of TiO₂ Supported Highly Dispersed Ru Nanoparticle Catalysts

Solar Light Induced Photon-Assisted Synthesis of TiO₂ Supported Highly Dispersed Ru Nanoparticle Catalysts

  • Materials (Basel). 2018 Nov 19;11(11):2329. doi: 10.3390/ma11112329.
Joanna Wojciechowska 1 2 Elisa Gitzhofer 3 Jacek Grams 4 Agnieszka M Ruppert 5 Nicolas Keller 6
Affiliations

Affiliations

  • 1 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland. joanna.wojciechowska@etu.unistra.fr.
  • 2 Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France. joanna.wojciechowska@etu.unistra.fr.
  • 3 Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France. elisagitz@gmail.com.
  • 4 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland. jacek.grams@p.lodz.pl.
  • 5 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland. agnieszka.ruppert@p.lodz.pl.
  • 6 Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France. nkeller@unistra.fr.
Abstract

Ru/TiO₂ are promising heterogeneous catalysts in different key-reactions taking place in the catalytic conversion of biomass towards fuel additives, biofuels, or biochemicals. TiO₂ supported highly dispersed nanometric-size metallic Ru catalysts were prepared at room temperature via a solar LIGHT induced photon-assisted one-step synthesis in liquid phase, far smaller Ru nanoparticles with sharper size distribution being synthesized when compared to the catalysts that were prepared by impregnation with thermal reduction in hydrogen. The underlying strategy is based on the redox photoactivity of the TiO₂ semi-conductor support under solar LIGHT for allowing the reduction of metal ions pre-adsorbed at the host surface by photogenerated electrons from the conduction band of the semi-conductor in order to get a fine control in terms of size distribution and dispersion, with no need of chemical reductant, final thermal treatment, or external hydrogen. Whether acetylacetonate or chloride was used as precursor, 0.6 nm sub-nanometric metallic Ru particles were synthesized on TiO₂ with a sharp size distribution at a low loading of 0.5 wt.%. Using the chloride precursor was necessary for preparing Ru/TiO₂ catalysts with a 0.8 nm sub-nanometric mean particle size at 5 wt.% loading, achieved in basic conditions for benefitting from the enhanced adsorption between the positively-charged chloro-complexes and the negatively-charged TiO₂ surface. Remarkably, within the 0.5⁻5 wt.% range, the Ru content had only a slight influence on the sub-nanometric particle size distribution, thanks to the implementation of suitable photo-assisted synthesis conditions. We demonstrated further that a fine control of the metal Ru nanoparticle size on the TiO₂ support was possible via a controlled nanocluster growth under irradiation, while the nanoparticles revealed a good resistance to thermal sintering.

Keywords

Ru/TiO2 catalyst; catalyst preparation; highly dispersed Ru nanoparticle; photodeposition; photon-assisted synthesis; reaction mechanism; sub-nanometric particle size distribution.

Figures
Products