1. Academic Validation
  2. Identification of 4-(6-((2-methoxyphenyl)amino)pyrazin-2-yl)benzoic acids as CSNK2A inhibitors with antiviral activity and improved selectivity over PIM3

Identification of 4-(6-((2-methoxyphenyl)amino)pyrazin-2-yl)benzoic acids as CSNK2A inhibitors with antiviral activity and improved selectivity over PIM3

  • Bioorg Med Chem Lett. 2024 Jan 8:99:129617. doi: 10.1016/j.bmcl.2024.129617.
Kareem A Galal 1 Andreas Krämer 2 Benjamin G Strickland 3 Jeffery L Smith 3 Rebekah J Dickmander 4 Nathaniel J Moorman 5 Timothy M Willson 6
Affiliations

Affiliations

  • 1 Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA.
  • 2 Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strabe 15, Frankfurt 60438, Germany; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strabe 9, Frankfurt 60438, Germany; Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, Frankfurt 60596, Germany.
  • 3 Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • 4 Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • 5 Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • 6 Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA. Electronic address: tim.willson@unc.edu.
Abstract

We report the synthesis of 2,6-disubstituted pyrazines as potent cell active CSNK2A inhibitors. 4'-Carboxyphenyl was found to be the optimal 2-pyrazine substituent for CSNK2A activity, with little tolerance for additional modification. At the 6-position, modifications of the 6-isopropylaminoindazole substituent were explored to improve selectivity over PIM3 while maintaining potent CSNK2A inhibition. The 6-isopropoxyindole analogue 6c was identified as a nanomolar CSNK2A inhibitor with 30-fold selectivity over PIM3 in cells. Replacement of the 6-isopropoxyindole by isosteric ortho-methoxy anilines, such as 7c, generated analogues with selectivity for CSNK2A over PIM3 and improved the kinome-wide selectivity. The optimized 2,6-disubstituted pyrazines showed inhibition of viral replication consistent with their CSNK2A activity.

Figures
Products