1. Academic Validation
  2. Serum- and Glucocorticoid-Inducible Kinase 1 Promotes Alternative Macrophage Polarization and Restrains Inflammation through FoxO1 and STAT3 Signaling

Serum- and Glucocorticoid-Inducible Kinase 1 Promotes Alternative Macrophage Polarization and Restrains Inflammation through FoxO1 and STAT3 Signaling

  • J Immunol. 2021 Jul 1;207(1):268-280. doi: 10.4049/jimmunol.2001455.
Junling Ren 1 Xiao Han 1 Hannah Lohner 1 Ruqiang Liang 2 Shuang Liang 3 Huizhi Wang 4
Affiliations

Affiliations

  • 1 Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA.
  • 2 Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA; and.
  • 3 Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY.
  • 4 Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA; wangh3@vcu.edu.
Abstract

Expression and activity of serum- and glucocorticoid-inducible kinase 1 (SGK1) are associated with many metabolic and inflammatory diseases. In this study, we report that SGK1 promotes alternative macrophage polarization and restrains inflammation in the infectious milieu of the gingiva. Inhibition of SGK1 expression or activity enhances characteristics of classically activated (M1) macrophages by directly activating the transcription of genes encoding iNOS, IL-12P40, TNF-α, and IL-6 and repressing IL-10 at message and protein levels. Moreover, SGK1 inhibition robustly reduces the expression of alternatively activated (M2) macrophage molecular markers, including arginase-1, Ym-1, Fizz1, and Mgl-1. These results were confirmed by multiple gain- and loss-of-function approaches, including small interfering RNA, a plasmid encoding SGK1, and LysM-Cre-mediated SGK1 gene knockout. Further mechanistic analysis showed that SGK1 deficiency decreases STAT3 but increases FoxO1 expression in macrophages under M2 or M1 macrophage-priming conditions, respectively. Combined with decreased FoxO1 phosphorylation and the subsequent suppressed cytoplasmic translocation observed, SGK1 deficiency robustly enhances FoxO1 activity and drives macrophage to preferential M1 phenotypes. Furthermore, FoxO1 inhibition abrogates M1 phenotypes, and STAT3 overexpression results in a significant increase of M2 phenotypes, indicating that both FoxO1 and STAT3 are involved in SGK1-mediated macrophage polarization. Additionally, SGK1 differentially regulates the expression of M1 and M2 molecular markers, including CD68 and F4/F80 and CD163 and CD206, respectively, and protects against Porphyromonas gingivalis-induced alveolar bone loss in a mouse model. Taken together, these results have demonstrated that SGK1 is critical for macrophage polarization and periodontal bone loss, and for the first time, to our knowledge, we elucidated a bifurcated signaling circuit by which SGK1 promotes alternative, while suppressing inflammatory, macrophage polarization.

Figures
Products