1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-10108A
    LY294002 hydrochloride Inhibitor 99.93%
    LY294002 hydrochloride 是一种有效的广谱 PI3K 抑制剂,对 P110α, P110δP110βIC50 分别为 0.5, 0.57 和 0.97 μM。 IC50值分别为P110α、P110δ和P110β的0.5、0.57和0.97 μM。LY294002 hydrochloride 也能抑制 CK2 ,其 IC50 为 98 nM。LY294002 hydrochloride 可用于胰腺癌研究。
    LY294002 hydrochloride
  • HY-N0447
    8-Gingerol Modulator 99.82%
    8-Gingerol 可在姜的根状茎 (Z. officinale) 中被发现,具有口服活性,可激活 TRPV1EC50 值为 5.0 µM。8-Gingerol 抑制 COX-2,还能抑制体外 H. pylori 的生长。同时,8-Gingerol 具有抗癌、抗氧化和抗炎特性,可通过抑制表皮生长因子受体 (EGFR) 和调节其下游的 STAT3/ERK 通路,抑制结肠癌细胞的增殖、迁移和侵袭。8-Gingerol 还可通过抑制氧化应激、诱导细胞周期停滞、促进凋亡 (Apoptosis) 以及调节自噬 (Autophagy) 来发挥免疫抑制作用。此外,8-Gingerol 具有心脏保护作用。8-Gingerol 有望用于癌症、感染、免疫抑制、心血管疾病领域的研究。
    8-Gingerol
  • HY-13334A
    BGT226 Inhibitor 99.85%
    BGT226 (NVP-BGT226) 是一种 PI3K (针对 PI3KαPI3KβPI3KγIC50分别是4 nM,63 nM,38 nM ) /mTOR 双抑制剂,对人头颈癌细胞具有较强的生长抑制活性。
    BGT226
  • HY-N6739
    Beauvericin

    白僵菌素

    Inhibitor 99.97%
    Beauvericin 是一种环六肽镰刀菌毒素,具有杀虫、抗菌、抗癌、抗病毒和细胞毒活性。Beauvericin 通过产生 DNA 断裂、染色体畸变和微核,造成细胞的遗传毒性,并抑制 PI3K/AKT 通路诱导细胞凋亡 (apoptosis),从而抑制 HCC 的生长。此外,Beauvericin 通过抑制淋巴细胞增殖和干扰人单核细胞向巨噬细胞的分化过程,来影响免疫功能。
    Beauvericin
  • HY-128483
    Fusaric acid

    萎蔫酸

    Inhibitor 99.94%
    Fusaric acid 是一种口服有效的多通路抑制剂,具有诱导氧化应激和凋亡 (apoptosis) 的活性。Fusaric acid 可螯合二价金属阳离子、损伤线粒体膜结构,激活 Caspase-3/7、-8、-9 等凋亡相关蛋白酶。Fusaric acid 还调节 Bax/Bcl-2 蛋白,抑制 NF-κBTGF-β1/SMADsPI3K/AKT/mTOR 等纤维化相关信号通路,减少胶原沉积。Fusaric acid 也是一种多巴胺 β-羟化酶 (dopamine β-hydroxylase) 抑制剂,可降低脑、心脏、脾脏和肾上腺中去甲肾上腺素和肾上腺素的内源性水平。Fusaric acid 可在心脏疾病中发挥心肌纤维化、改善心脏肥厚的作用,还能够用于食管癌、肝癌等研究。
    Fusaric acid
  • HY-15856B
    Flupentixol dihydrochloride

    盐酸氟哌噻吨

    Inhibitor 99.73%
    Flupentixol dihydrochloride 是一种具有口服活性的 D1/D2 多巴胺受体拮抗剂和新型 PI3K 抑制剂 (PI3Kα IC50=127 nM)。Flupentixol dihydrochloride 具有对癌细胞的抗增殖活性并诱导细胞凋亡。Flupentixol dihydrochloride 也可用于精神分裂症、焦虑和抑郁症的研究。
    Flupentixol dihydrochloride
  • HY-10110
    IC-87114 Inhibitor 99.85%
    IC-87114 是一种有效的选择性 PI3Kδ 抑制剂,IC50 为 0.5 μM。
    IC-87114
  • HY-110171A
    iMDK quarterhydrate Inhibitor 99.37%
    iMDK quarterhydrate 是一种有效的 PI3K 抑制剂,可抑制生长因子 MDK(也称为中期因子或 MK)。iMDK quarterhydrate 与 MEK 抑制剂协同抑制非小细胞肺癌 (NSCLC),而不会伤害正常细胞和小鼠。
    iMDK quarterhydrate
  • HY-N0404
    Sinigrin

    黑芥子苷

    Inhibitor 99.97%
    Sinigrin (Allyl-glucosinolate) 是一种口服有效的存在于十字花科植物中的硫代葡萄糖苷。Sinigrin 具有抗癌、抗菌、抗真菌、抗炎抗氧化和抑制脂肪合成等多种活性。Sinigrin 可用于肿瘤、炎症性和代谢性等疾病的研究。
    Sinigrin
  • HY-16526
    Pilaralisib Inhibitor 99.14%
    Pilaralisib (XL147; SAR245408) 是一种有效的选择性 I 类 PI3Ks 抑制剂,抑制 PI3KαPI3KβPI3KγPI3KδIC50 分别为 39 nM,383 nM,23 nM 和 36 nM。
    Pilaralisib
  • HY-12285
    Serabelisib Inhibitor 99.44%
    Serabelisib (MLN1117) 是一种选择性的 p110α 抑制剂, IC50 值为 15 nM。
    Serabelisib
  • HY-12036
    GSK1059615 Inhibitor ≥99.0%
    GSK1059615 是 PI3Kα/β/δ/γ 可逆的抑制剂,同时也抑制 mTORIC50 值分别为 0.4 nM/0.6 nM/2 nM/5 nM 和 12 nM。
    GSK1059615
  • HY-16596
    CNX-1351 Inhibitor 99.88%
    CNX-1351 是一种有效的选择性 PI3Kα 抑制剂,IC50 为 6.8 nM。
    CNX-1351
  • HY-13281
    PIK-75 hydrochloride Inhibitor 99.72%
    PIK-75 hydrochloride 是一种可逆的 DNA-PKp110α-选择性的抑制剂,抑制 DNA-PKp110α 和 p110γ,IC50 分别为 2,5.8 和 76 nM。PIK-75 hydrochloride 抑制 p110α 效果比抑制 p110β (IC50=1.3 μM) 高 200 多倍。PIK-75 hydrochloride 诱导凋亡 (apoptosis)。
    PIK-75 hydrochloride
  • HY-10683
    PKI-402 Inhibitor 99.17%
    PKI-402 是一种有效的 PI3KmTOR 抑制剂,抑制 PI3Kα, mTOR, PI3Kβ, PI3KδPI3KγIC50 分别为 2, 3, 7, 14 和 16 nM。
    PKI-402
  • HY-N2393
    Kukoamine B

    地骨皮乙素

    Inhibitor 99.70%
    Kukoamine B 是一种精胺生物碱,是一种强效的双重 LPS 和 CpG DNA 抑制剂,其 Kd 值分别为 1.23 µM 和 0.66 µM。Kukoamine B 具有抗炎、抗糖尿病、抗氧化、抗骨质疏松和神经保护作用。Kukoamine B 具有用于脓毒症研究的潜力。
    Kukoamine B
  • HY-146751
    PI3K/Akt/mTOR-IN-2 Inhibitor 99.93%
    PI3K/Akt/mTOR-IN-2 是一种有效的 PI3K/AKT/mTOR 抑制剂。PI3K/Akt/mTOR-IN-2 具有抗癌作用,并对 MDA-MB-231 细胞具有选择性,IC50 为 2.29 μM。PI3K/Akt/mTOR-IN-2 可诱导癌细胞周期阻滞和细胞凋亡 (apoptosis)。
    PI3K/Akt/mTOR-IN-2
  • HY-N1412
    1,3-Dicaffeoylquinic acid

    1,3-二咖啡酰奎宁酸

    Activator 99.09%
    1,3-Dicaffeoylquinic acid是咖啡酰奎宁酸衍生物,具有抗氧化活性和自由基清除活性。
    1,3-Dicaffeoylquinic acid
  • HY-16585
    VS-5584 Inhibitor 98.71%
    VS-5584 是一种 pan-PI3K/mTOR 激酶抑制剂,抑制 PI3Kα, PI3Kβ, PI3Kδ, PI3KγmTORIC50 分别为 16 nM, 68 nM, 42 nM, 25 nM 和 37 nM。VS-5584 同时阻断 mTORC2mTORC1
    VS-5584
  • HY-13431
    KU-0060648 Inhibitor 99.62%
    KU-0060648 是 PI3KDNA-PK 的双重抑制剂,抑制 PI3Kα, PI3Kβ, PI3Kγ, PI3KδDNA-PKIC50 值分别为 4 nM,0.5 nM,0.1 nM,0.594 nM 和 8.6 nM 。
    KU-0060648
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.