1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-147900
    PI3K-IN-35 Inhibitor
    PI3K-IN-35 (Compound 6l) 是一种高选择性的 PI3K 抑制剂,其对 PI3K-α、PI3K-β 和 PI3K-δ 的 IC50 分别为 13.98、7.22 和 10.94 μM。PI3K-IN-35 阻滞细胞周期于 G2/M 期并诱导细胞凋亡。PI3K-IN-35 可用于白血病研究。
    PI3K-IN-35
  • HY-168608
    TRPM7-IN-1 Activator
    TRPM7-IN-1 (compound SUD) 是一种苯甲酰脲衍生物,一种有效的 TRPM7 抑制剂。TRPM7-IN-1 诱导 MCF-7 和 BGC-823 细胞周期停滞和凋亡,减少细胞迁移。TRPM7-IN-1 降低波形蛋白表达并增加 E-钙粘蛋白表达。TRPM7-IN-1 降低 TRPM7 样电流,并且通过激活 PI3K/Akt 信号通路降低 TRPM7 表达。TRPM7-IN-1 是一种通过抑制 TRPM7 表达和功能来抑制乳腺癌和胃癌转移的潜在药物。
    TRPM7-IN-1
  • HY-131910A
    (R)-IHMT-PI3Kδ-372 Inhibitor 99.75%
    (R)-IHMT-PI3Kδ-372 (R-18) 是一种有效的选择性 PI3Kδ 抑制剂,IC50 为 19 nM。(R)-IHMT-PI3Kδ-372 (R-18) 可用于慢性阻塞性肺疾病 (COPD) 的研究。
    (R)-IHMT-PI3Kδ-372
  • HY-151635
    PI3K/VEGFR2-IN-1 Inhibitor
    PI3K/VEGFR2-IN-1 是一种有效的双重 PI3K/VEGFR2/KDR/Flk-1 抑制剂,抑制 PI3KVEGFR2/KDR/Flk-1IC50 值分别为 2.21 和 68 μM。PI3K/VEGFR2-IN-1 诱导细胞凋亡 (apoptosis)。PI3K/VEGFR2-IN-1 可用于癌症的研究。
    PI3K/VEGFR2-IN-1
  • HY-144692
    MEK/PI3K-IN-1 Inhibitor
    MEK/PI3K-IN-1 (compound 6r) 是一种有效的 MEK/PI3K 抑制剂,其IC50 值分别为 124 nM (MEK1), 130 nM (PI3Kα), 和 236 nM (PI3Kδ)。MEK/PI3K-IN-1 抑制 pAKT 和 pERK1/2 水平。MEK/PI3K-IN-1 对肿瘤细胞具有抗增殖活性。
    MEK/PI3K-IN-1
  • HY-155996
    FD2157 Inhibitor
    FD2157 是一种光敏的 PI3K 抑制剂,对 PI3Kα、PI3Kβ、PI3Kγ 的 IC50 分别为 43 nM、83 nM、84 nM、14 nM、PI3Kδ。当暴露于 365 nm 紫外线时,FD2157 可有效抑制癌细胞增殖并诱导细胞凋亡 (apoptosis)。
    FD2157
  • HY-159517
    PI3K/Akt/mTOR-IN-5 Inhibitor
    PI3K/Akt/mTOR-IN-5 (compound D3) 是一种 Pseudolaric Acid B (HY-N6939) 的衍生物,具有抗肿瘤活性。PI3K/Akt/mTOR-IN-5 通过 PI3K/AKT/mTORSTAT3/GPX4 途径抑制肿瘤细胞的过度增殖。此外,PI3K/Akt/mTOR-IN-5 有效抑制 EDU 阳性率,减少集落形成,使 HCT-116 细胞处于 S 期和 G2/M 期,诱导细胞凋亡 (apoptosis)。
    PI3K/Akt/mTOR-IN-5
  • HY-159577
    Nic-15 Modulator
    Nic-15 (compound 4n) 是用于拮抗胰腺肿瘤低血管特性的抗紧缩剂。低血管特性使癌细胞适应营养缺乏的肿瘤微环境,产生耐药性。Nic-15 能够调节 PI3K/Akt/mTOR 通路,同时缓解 Gemcitabine (HY-17026) 诱导的 ER 应激。Nic-15 可显著抑制 MIA PaCa-2 和 PANC-1 胰腺癌细胞迁移和集落形成,Nic-15 与 Gemcitabine 联合使用可有效解决胰腺肿瘤耐药性的问题。在体内异种移植模型中,Nic-15 能够显著增强 Gemcitabine 的疗效。
    Nic-15
  • HY-161968
    EGFR/PI3Kα-IN-1 Inhibitor
    EGFR/PI3Kα-IN-1 (compound 30k) 是双重 EGFR/PI3Kα 抑制剂,IC50 分别为 3.6 nM (EGFRL858R/T790M) 和 30 nM (PI3Kα)。EGFR/PI3Kα-IN-1 可抑制肿瘤细胞增殖,具有抗癌活性。
    EGFR/PI3Kα-IN-1
  • HY-147613
    PI3K/mTOR Inhibitor-6 Inhibitor
    PI3K/mTOR Inhibitor-6 (Compound 19c) 是一种有效的 PI3K/mTOR 双重抑制剂。PI3K/mTOR Inhibitor-6 在人工胃液中的稳定性优于 gedatolisib。PI3K/mTOR Inhibitor-6 在 10 μM 时显着抑制 PI3K/Akt/mTOR 信号通路。PI3K/mTOR Inhibitor-6具有研究癌症疾病的潜力。
    PI3K/mTOR Inhibitor-6
  • HY-N6950R
    Hederacolchiside A1 (Standard)

    革叶常春藤皂苷 A1 (Standard)

    Modulator
    Hederacolchiside A1 (Standard) 是 Hederacolchiside A1 的分析标准品。本产品用于研究及分析应用。Hederacolchiside A1 是从白头翁中分离的,通过调节 PI3K/Akt/mTOR 信号通路诱导凋亡,从而抑制肿瘤细胞的增殖。Hederacolchiside A1 具有抗血吸虫病活性,影响体内和体外的寄生虫生存力。
    Hederacolchiside A1 (Standard)
  • HY-162647
    PI3Kδ-IN-22 Inhibitor
    PI3Kδ-IN-22 (Compound 26) 是 PI3Kδ 的选择性抑制剂,pKi 为 9.3。PI3Kδ-IN-22 抑制 THP-1 细胞中的 PI3Kδ-AKT 信号通路,pIC50 为 9.4。PI3Kδ-IN-22 在大鼠体内表现出良好的药代动力学特性。
    PI3Kδ-IN-22
  • HY-N0284R
    Esculetin (Standard)

    秦皮乙素 (Standard)

    Inhibitor
    Esculetin (Standard) 是 Esculetin 的分析标准品。本产品用于研究及分析应用。Esculetin 是一种主要从花曲柳 (Fraxinus rhynchophylla) 的树皮中提取的活性成分。 Esculetin 通过抑制 PI3K/Akt 途径来抑制血小板衍生生长因子 (PDGF) 诱导的气道平滑肌细胞 (ASMCs) 表型转换。Esculetin 具有抗氧化,抗炎和抗肿瘤的作用。
    Esculetin (Standard)
  • HY-18085S2
    Quercetin-13C3

    槲皮素 13C3

    Inhibitor
    Quercetin-13C3 是一种 13C 标记的 Quercetin。Quercetin 是一种天然黄酮类化合物,可激活或抑制许多蛋白质的活性。Quercetin 可激活 SIRT1,也可抑制 PI3K,抑制 PI3KγPI3KδPI3KβIC50 分别为 2.4 μM, 3.0 μM, 5.4 μM。
    Quercetin-<sup>13</sup>C<sub>3</sub>
  • HY-N0728A
    α-Linolenic acid sodium Inhibitor
    α-Linolenic acid sodium 是从紫苏中分离的,人体无法合成的必需脂肪酸。α-Linolenic acid sodium 可通过调节 PI3K/Akt 信号传导来影响血栓形成过程。α-Linolenic acid sodium 具有抗心律失常的特性,并且与心血管疾病和癌症等有关。
    α-Linolenic acid sodium
  • HY-P10090
    Apoptin-derived peptide
    Apoptin-derived peptide 是一种抗癌活性多肽,具有细胞毒性。Apoptin-derived peptide 通过调节 PI3K/AKT/ARNT 信号而促进胃癌细胞的凋亡 (apoptosis) 和坏死 (necrosis)。在细胞内,Apoptin-derived peptide 抑制癌细胞侵袭和迁移,并抑制 PI3K 的亚基 p85 的表达和磷酸化,进一步抑制胃癌发展有关的 PI3K/AKT 通路。
    Apoptin-derived peptide
  • HY-168319
    PI3Kγ ligand 1
    PI3Kγ ligand 1 是一种 PROTAC (HY-137340) 靶蛋白配体 (Ligand for Target Protein for PROTAC)。
    PI3Kγ ligand 1
  • HY-155833
    PI3Kδ-IN-13 Inhibitor
    PI3Kδ-IN-13 (化合物 89) 是一种 PI3Kδ 抑制剂 (IC50=2.6 nM)。PI3Kδ-IN-13 可用于癌症、感染、炎症及自身免疫性病变等细胞增殖类疾病的研究。
    PI3Kδ-IN-13
  • HY-156445
    PI3K/mTOR Inhibitor-14 Inhibitor
    PI3K/mTOR Inhibitor-14(化合物 Y-2)是一种有效的 PI3KmTOR 双重抑制剂,IC50 分别为 171.4 nM 和 10.1 nM。PI3K/mTOR Inhibitor-14 具有抗肿瘤活性。
    PI3K/mTOR Inhibitor-14
  • HY-147966
    HDAC-IN-43 Inhibitor
    HDAC-IN-43是一种强效的HDAC 1/3/6 抑制剂,IC50 值分别为82、45和24 nM。HDAC-IN-43是一种弱的PI3K/mTOR抑制剂,IC50 值分别为3.6 和 3.7 μM。HDAC-IN-43具有广谱的抗增殖活性。
    HDAC-IN-43
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.